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ABSTRACT
This paper introduces a new attack vector in modern processors:
the timing-based channel attacks due to the Translation Look-aside
Buffers (TLBs). This paper first presents a three-step modeling ap-
proach to exhaustively enumerate all possible TLB timing-based
vulnerabilities and automatically-generated micro security bench-
marks that test for the TLB vulnerabilities. After showing the insecu-
rity of standard TLBs, two new secure TLB designs are implemented
under RISC-V Rocket Core processor architecture: a Static-Partition
(SP) TLB and a Random-Fill (RF) TLB. The proposed secure TLBs
are shown to be able to defend against all attacks with a small
performance and area overhead.
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1 INTRODUCTION
Research on timing-based attacks (and defenses) in processors has
a long history. To date, researchers have focused mainly on the
memory subsystem when showing the different timing-based at-
tacks, and have, for example, demonstrated a plethora of timing-
based channels in caches, e.g. [1, 7]. All the attacks have shown the
possibilities to extract sensitive information via the timing-based
channels, and often the focus is on extracting cryptographic keys.

Timing-based channels in TLBs, which is the focus of this work,
are distinct from caches in that they are triggered by memory trans-
lation requests, not by direct accesses to data. They also have a
different granularity (pages vs. cache lines for data or instruction
caches), and, in commercial processors, TLBs have more compli-
cated logic, compared to caches, due to support for various memory
page sizes. Further, defending cache attacks does not protect against
TLB attacks [6]. Moreover, there has not been a systematic secu-
rity analysis of the TLB vulnerabilities, nor concrete proposals for
secure TLB design. This paper provides both.

This work starts by providing a novel three-step modeling ap-
proach to enumerate all possible TLB timing-based vulnerabilities
exhaustively. Rather than modeling software attacks, the three-
step approach analyzes all possible victim or attacker behaviors
that affect the TLB state. In total, 24 possible vulnerabilities were
found, of which only 8 map to existing attacks [6, 8]. We believe
that the other 16 are new attack types not previously considered.
Based on the three-step model, micro security benchmarks are then
semi-automatically generated.

Armed with the three-step model and the security benchmarks,
the security of different typical configurations of TLBs are tested
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using Rocket Core implementation of the RISC-V processor archi-
tecture. Standard TLBs, i.e. Fully-Associative (FA) or Set-Associative
(SA) TLBs, which include process IDs, e.g. ASID in RISC-V archi-
tecture, are shown to be vulnerable to many of the attacks. Conse-
quently, this work presents new defenses. Especially, we present
two new secure TLB designs in hardware: a Static-Partition (SP)
TLB and a Random-Fill (RF) TLB, latter of which is more complex
but can defend all of the attacks. These are the first hardware de-
fenses to TLB attacks. To help understand the impact of the new
secure TLBs on the system performance, a RISC-V Rocket Core
based processor with the new secure TLBs are synthesized on the
Zynq ZC706 and ZedBoard FPGAs.

2 BACKGROUND
This section reviews existing work on caches (most closely related
to TLBs) and the few existing works on TLBs.

2.1 Timing-Based Attacks and Caches
In modern processor caches, there are timing differences between
cache hits (fast) and cache misses (slow), and these variations in
timing have been exploited to leak sensitive information. Especially,
a large number of different cache timing-based side-channel and
covert-channel attacks have been presented in the literature [7, 14].
And, there are many secure hardware cache designs that aim to
prevent these different attacks [18, 22] However, even if the cache-
based attacks are mitigated, TLB-based attacks are the next attack
vector that malicious attackers might use – and hence are the focus
of this work.

2.2 Timing-Based Channels in TLBs
Compared with caches, there are two published TLB-based timing
attacks 1. TLBleed attack [6] uses timing-based channels combined
with machine learning to create an attack which is able to leak bits
of secret keys from the RSA algorithm (they also show attack for
the EdDSA algorithm). They leverage the Prime + Probe [13] attack
strategy previously applied in processor caches.

Prior to TLBleed, the Double Page Fault attack [8] leverages the
Cache Collision [1] attack strategy previously applied in proces-
sor caches. It requires the victim to access some kernel memory
pages twice, and uses the fact that access to previously allocated
kernel virtual pages will bring in TLB entries, even if a page fault
is generated and accesses permission checks failed. The timing of
the second access thus reveals information on whether an inherent
TLB hit happened.

1The Leaky Cauldron [17] attack is also related to TLB and targets Intel SGX. However,
it does not depend on hits and misses in the TLB, but instead, it relies on the assumption
that the attacker can evict the enclave entries in the TLB, so an enclave’s memory
access will trigger a page table walk, and the malicious OS can get the page access
pattern trace.
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Beyond these individual attacks, there are neither exhaustive
categorizations nor models of possible TLB timing-based attacks –
as are proposed in this work.

2.3 Existing Approaches to Securing TLBs
Currently, we are only aware of five approaches (mostly software-
based) that can help mitigate some TLB attacks, but are not as
effective as our hardware-secure TLBs.

First, today’s Linux system makes use of virtual addresses and
process identifiers, e.g., ASID on RISC-V, to identify different pro-
cesses in the SA TLBs to do the partition. Second, in the Sanctum [2]
secure processor design, the per-core SA TLBs are flushed by a se-
curity monitor software whenever a core switches between enclave
and non-enclave code. Third, Intel SGX also flushes SA TLBs during
switching between enclave and non-enclave code [9]. Fourth, the
InvisiSpec [21] work proposes to prevent observable changes to
D-TLBs only for speculative attacks. Fifth, some processors employ
FA TLBs, which by design do not have different TLB sets (there is
only one set).

Unlike all the existing work, this work presents two new hard-
ware secure TLB designs, including the RF TLB which can prevent
all types of timing-based attacks according to the three-step model,
and has about the same performance as a SA TLB.

3 FRAMEWORK
Our paper’s key idea focused on the new attack vector in modern
processors: the timing-based channel attacks due to the TLBs. We
provide systematic approach to analyze the full set of the vulnera-
bilities and provide corresponding hardware defenses to mitigate
them.

3.1 Modeling TLB Timing-Based Vulnerabilities
We first presented a novel three-step modeling approach that was
used to exhaustively enumerate all possible TLB timing-based vul-
nerabilities.

3.1.1 Threat Model and Assumptions. A TLB timing-based attack
involves an attacker and a victim. In many cases, they are executing
on the same processor core, a set of cores, or a set of hyper-threads
which share the same physical TLB, but this is not required for
all types of attacks. In this paper, we use 𝐴 and 𝑉 to denote the
attacker and the victim with different process IDs. For the attacks
where the attacker and the victim are in the same address space, the
attacker is able to trigger some known address memory operation
as if it were the victim, e.g. states 𝑉𝑎 and 𝑉𝑎𝑎𝑙𝑖𝑎𝑠 in Table 1 can be
actually attackers.

We assume, in hardware, all memory operations are identified by
the virtual memory address, 𝑣𝑎𝑑𝑑𝑟 (including null address in case of
certain TLB flush-related operations) and the process ID (including
null process ID in case of certain TLB flush-related operations), e.g.,
ASID in RISC-V.

The victim is assumed to have some security-critical memory
range, 𝑥 , within which the access pattern depends on the secret the
attacker wants to learn. An example of a security-critical region
is the set of page entries accessed during execution of the RSA
functions of libgcrypt, where the value of the key bit (either 0 or 1)
determines which specific memory pages are accessed. The timing

Table 1: The 10 possible states for a single TLB block in our three-
step vulnerability modeling procedure.

States Description

𝑉𝑢

The TLB block contains translation for a memory address 𝑢,
translation which is placed in the TLB block due to a memory
access by the victim. Attacker does not know 𝑢, but 𝑢 is from
a range 𝑥 of memory locations, range which is known to the
attacker. The address 𝑢 may have same page index as 𝐴𝑎 or
𝑉𝑎 and thus conflict with them in the TLB block. The goal of
the attacker is to learn the page address or index of𝑉𝑢 .

𝐴𝑎

or
𝑉𝑎

The TLB block contains translation for a memory address 𝑎.
The translation is placed in the TLB block due to a memory
access by the attacker, 𝐴𝑎 , or the victim, 𝑉𝑎 . The attacker
knows the address 𝑎, independent of whether the access was
by the victim or the attacker themselves. The address 𝑎 is
from within the range of sensitive locations 𝑥 . The address 𝑎
may or may not be the same as the address 𝑢.

𝐴
𝑎𝑎𝑙𝑖𝑎𝑠

or
𝑉
𝑎𝑎𝑙𝑖𝑎𝑠

The TLB block contains translation for a memory address
𝑎𝑎𝑙𝑖𝑎𝑠 . The translation is placed in the TLB block due to a
memory access by the attacker, 𝐴

𝑎𝑎𝑙𝑖𝑎𝑠
, or the victim,𝑉

𝑎𝑎𝑙𝑖𝑎𝑠
.

The address 𝑎𝑎𝑙𝑖𝑎𝑠 is within the range 𝑥 . It is not the same as
𝑎, but it has same page index and can map to the same TLB
block, i.e. it “aliases” to the same block.

𝐴𝑖𝑛𝑣

or
𝑉𝑖𝑛𝑣

The TLB block previously containing translation for a memory
address is now invalid. The translation is “removed” from the
TLB block by the attacker𝐴𝑖𝑛𝑣 or the victim𝑉𝑖𝑛𝑣 as the result
of TLB block being invalidated, e.g. due to synchronization
updates to in-memory memory-management data structures
or due to context switch between processes which causes OS
to flush per-core TLB entries.

𝐴𝑑

or
𝑉𝑑

The TLB block contains translation for a memory address 𝑑 .
The translation is placed in the TLB block due to a memory
access by the attacker, 𝐴𝑑 , or the victim,𝑉𝑑 . The address 𝑑 is
not within the range 𝑥 .

★
Any data, or no data, can be in the TLB block. The attacker
has no knowledge of page address in this TLB block.

of the accesses to the security-critical memory range is affected by
the timing of TLB-related operations, and it can reveal information
such as cryptographic keys.

The attacker is assumed to know the victim software, e.g., what
implementation of a cryptographic algorithm it uses, but not the
secret cryptographic keys. He or she is assumed to know the size,
𝑠𝑠𝑖𝑧𝑒 , and the location, 𝑠𝑏𝑎𝑠𝑒 (in virtual memory) of the security-
critical memory range 𝑥 . The attacker can measure the timing of
its own memory operations or operations of the victim; but cannot
access the actual sensitive data being processed by the victim.

3.1.2 Introduction of the Three-Step Model. One observation we
make is that all existing TLB timing-based attacks take three steps.
In 𝑆𝑡𝑒𝑝 1, a memory operation is performed, placing the TLB block
(also called TLB slot or TLB entry) in a known initial state (e.g.
a new translation is put into the block or block is invalidated).
Then, in 𝑆𝑡𝑒𝑝 2, a second memory operation alters the state of the
TLB block from the initial state. Finally, in 𝑆𝑡𝑒𝑝 3, a final memory
operation is performed, and the timing of the final operation reveals
some information about the relationship among the addresses from
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Table 2: The table shows all the timing-based TLB vulnerabilities.
Attack Strategy column gives our common name for each set of one
or more specific vulnerabilities that would be exploited in an at-
tack in a similar manner (many of the names are borrowed from
cache timing-based attacks in literature). Vulnerability Type column
gives the three steps that define each vulnerability. For 𝑆𝑡𝑒𝑝 3, fast
indicates a TLB hit must be observed, while slow indicates a TLB
miss must be observed. Macro Type column proposes the categoriza-
tion the vulnerability belongs to. “E” is for external interference
vulnerabilities. “I” is for internal interference vulnerabilities. “M” is
for miss-based vulnerabilities. “H” is for hit-based vulnerabilities.
Attack column shows if a type of vulnerability has been previously
presented in literature.

Attack
Strategy

Vulnerability Type Macro
Type Attack

𝑆𝑡𝑒𝑝 1 𝑆𝑡𝑒𝑝 2 𝑆𝑡𝑒𝑝 3

TLB
Internal
Collision

𝐴𝑖𝑛𝑣 𝑉𝑢 𝑉𝑎 (fast) IH (1)
𝑉𝑖𝑛𝑣 𝑉𝑢 𝑉𝑎 (fast) IH (1)
𝐴𝑑 𝑉𝑢 𝑉𝑎 (fast) IH (1)
𝑉𝑑 𝑉𝑢 𝑉𝑎 (fast) IH (1)

𝐴
𝑎𝑎𝑙𝑖𝑎𝑠

𝑉𝑢 𝑉𝑎 (fast) IH (1)
𝑉
𝑎𝑎𝑙𝑖𝑎𝑠

𝑉𝑢 𝑉𝑎 (fast) IH (1)

TLB Flush
+ Reload

𝐴𝑖𝑛𝑣 𝑉𝑢 𝐴𝑎 (fast) EH new
𝑉𝑖𝑛𝑣 𝑉𝑢 𝐴𝑎 (fast) EH new
𝐴𝑑 𝑉𝑢 𝐴𝑎 (fast) EH new
𝑉𝑑 𝑉𝑢 𝐴𝑎 (fast) EH new

𝐴
𝑎𝑎𝑙𝑖𝑎𝑠

𝑉𝑢 𝐴𝑎 (fast) EH new
𝑉
𝑎𝑎𝑙𝑖𝑎𝑠

𝑉𝑢 𝐴𝑎 (fast) EH new
TLB Evict

+ Time
𝑉𝑢 𝐴𝑑 𝑉𝑢 (slow) EM new
𝑉𝑢 𝐴𝑎 𝑉𝑢 (slow) EM new

TLB Prime
+ Probe

𝐴𝑑 𝑉𝑢 𝐴𝑑 (slow) EM (2)
𝐴𝑎 𝑉𝑢 𝐴𝑎 (slow) EM (2)

TLB
version of
Bernstein’s

Attack

𝑉𝑢 𝑉𝑎 𝑉𝑢 (slow) IM new
𝑉𝑢 𝑉𝑑 𝑉𝑢 (slow) IM new
𝑉𝑑 𝑉𝑢 𝑉𝑑 (slow) IM new
𝑉𝑎 𝑉𝑢 𝑉𝑎 (slow) IM new

TLB Evict
+ Probe

𝑉𝑑 𝑉𝑢 𝐴𝑑 (slow) EM new
𝑉𝑎 𝑉𝑢 𝐴𝑎 (slow) EM new

TLB Prime
+ Time

𝐴𝑑 𝑉𝑢 𝑉𝑑 (slow) IM new
𝐴𝑎 𝑉𝑢 𝑉𝑎 (slow) IM new

(1) Double Page Fault attack [8].
(2) TLBleed attack [6].

𝑆𝑡𝑒𝑝 1, 𝑆𝑡𝑒𝑝 2 and 𝑆𝑡𝑒𝑝 3. Attacks with more than three steps
can be reduced to a three-step attack (details are in our paper [3]).
Table 1 lists all the 10 possible states of the TLB block for each step
of our three-step model. Each step in the model represents a state
of a TLB block.

3.1.3 Derivation of All TLB Vulnerabilities. Based on the states pos-
sible in each step there are in total 10 ∗ 10 ∗ 10 = 1000 combinations
of possible three-steps. We developed an algorithm that can process
the list of all the three-steps, and eliminates ones which cannot lead
to an attack based on a list of derived rules (details mentioned in
our paper [3]).

After applying the script which implements our simplification
algorithm, 34 three-step access patterns remain as candidates for
possible timing-based TLB attacks. These 34 access patterns are
further manually reduced to a list of 24 types of timing-based TLB

vulnerabilities, listed in Table 2. Due to space limitation, details on
why the 10 patterns cannot form vulnerabilities are not included in
the paper.

To summarize all the vulnerability types, Table 2 shows the list
of all the 24 vulnerability types, along with a more coarse-grained
attack strategies, which cover one or more vulnerability types.
The list of vulnerability types can be further collected into four
simple macro types: internal interference miss-based (IM), internal
interference hit-based (IH), external interference miss-based (EM),
external interference hit-based (EH). Most of the vulnerability types
have not been explored before, except some mapping to existing
Double Page Fault attack [8] and the TLBleed attack [6].

3.1.4 Key Contribution. The key contribution of this paper was to
show the first systematic modeling approach that can be used to
reason about all timing-based attacks on TLBs. Our work developed
a novel model of the attacker and the victim behavior in relation to
the TLB states. Rather than modeling software attacks, the three-
step approach analyzed all possible victim or attacker behaviors that
affected the TLB states. All possible combinations of the attacker
and victim behaviors were evaluated, and systematically reduced
to only three-step behaviors that can result in timing-based attacks.
In total, 24 possible vulnerabilities were found, including 16 new
attack types not previously considered.

3.2 Micro Security benchmarks
Building on the three-step model, our paper then showed how to
automatically generate micro security benchmarks to test TLBs to
check if they are vulnerable to each of the attack types. To generate
the micro security benchmarks, we leverage a Python script that
follows a three-step template to generate assembly code of all the
types of vulnerabilities showed in Table 2.

We use channel capacity [5] to quantify the amount of informa-
tion about the secret address translation that the attack gains from
a specific timing-based attack.

3.3 Secure TLB Designs
After showing the insecurity of standard TLBs, our work also pro-
posed the first hardware defenses for TLB attacks: the new SP TLB
and the new RF TLB, and realize them in a Rocket Core implemen-
tation of a RISC-V processor. Especially, RF TLB was more complex
in logic but could defend all of the attacks comparing to SP TLB.

The first type of TLB, SP TLB is a SA TLB where certain ways
are assigned to a victim process and other ways are assigned to all
remaining processes, which by default are assumed to be potential
attacker processes. The process ID, e.g. ASID in RISC-V, is used
to differentiate the victim and the attacker. The number of ways
assigned to each is set at design time, but could be further extended
to be dynamic at run time.

To protect all the vulnerabilities, we propose Random-Fill TLB,
which is able to de-correlate the requested memory access from
actual TLB entries that are brought into the TLB, making the at-
tacker’s observations non-deterministic. For TLB hits, the behavior
is the same as the SA TLB. For TLB misses, depending on the mem-
ory address region, a random address translation will be fetched
into the TLB ("random fill"), while the originally requested address
is directly sent back to the CPU without filling the TLB ("no fill").
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Figure 1: (a) Random Fill Engine, (b) RF TLB block diagram.

The RF TLB also introduces the 𝑆𝑒𝑐 bit which is used to identify
certain memory translation entries are belonging to secure data.

RF TLB block diagram is shown in Figure 1b. All the bold lines
and blocks are the added hardware and logic extension. In the TLB
array, an extra field (a secure bit 𝑆𝑒𝑐 , either 0 or 1) is added to
each of the TLB entries to indicate whether it contains an address
translation within the secure region. In addition, the existing pro-
cess ID field (e.g., ASID in RISC-V) in each TLB entry is used to
differentiate the victim and the attacker process. By default, we set
specific process ID 1 for the victim program and all other ASIDs to
be attackers.

An extra set of registers is added to store the process ID of the
victim process and the start address, 𝑠𝑏𝑎𝑠𝑒 , and the size, 𝑠𝑠𝑖𝑧𝑒 of
the secure region (the base and size are defined in terms of pages,
usually 4KiB). The registers can be managed by a trusted OS to
change the victim process ID and secure regions when different
victim programs need protection.

An extra buffer is added which stores equivalent of one TLB
entry. It is used as temporary storage for translation data that is
returned to the CPU, but which should not be placed in the TLB. It
will be cleaned up after the address is returned.

The Random Fill Engine (RFE), shown in Figure 1a is used to
generate addresses which should be used for TLB updates2. In
Figure 1b, (1-2), the “no fill” fill_type will first be sent to TLB. On a
TLB miss, the TLB will probe the page address without filling TLB
entries to see if the chosen entry has a valid secure page address
translation. Then, (3) the 𝑆𝑒𝑐𝑅 bit is set and sent back. Next, (4) if it
is a request to the secure region or the 𝑆𝑒𝑐𝑅 bit is one, a random
fill request will be triggered. If the original request is in the secure
region, a random virtual page address is derived from RFE within
the secure region [𝑠𝑏𝑎𝑠𝑒 , 𝑠𝑏𝑎𝑠𝑒 + 𝑠𝑠𝑖𝑧𝑒], and a translation will be
put into the TLB entry. If the original request comes from the non-
secure region, most of the higher bits of the requested address
are remain the same while the bits that correspond to the TLB set

2We assume the OS has pre-generated page table entries that may correspond to the
random virtual address generated by the RFE, which may not be actually used by the
original program, to prevent OS or software-based timing attacks due to page faults
when a page entry for a random address is looked up by the TLB.

Table 3: Comparison of SA TLB, SP TLB and RF TLB simulation and
theoretical results. 𝐶* and 𝐶 represent mutual information based
on simulation and theoretical calculation, respectively. Bold 𝐶* and
𝐶 are the ones with value 0 or about 0, indicating that this TLB is
able to prevent the corresponding vulnerability. Small numbers are
rounded up. Some vulnerability types are not shown to save space.

SA TLB SP TLB RF TLB
A�ack Category Vulnerability Type C* C C* C C* C
TLB Evict+Probe Vd  Vu  Ad (slow) 0 0 0 0 0 0
TLB Prime+Time Ad  Vu  Vd (slow) 0 0 0 0 0 0

TLB Flush+ Reload Ad  Vu  Aa (fast) 0 0 0 0 0 0
TLB Prime+Probe Ad  Vu  Ad (slow) 0.99 1 0.02 0 0.01 0
TLB Evict+Time Vu  Ad  Vu (slow) 1 1 0.03 0 0 0

TLB Internal Collision Ad  Vu  Va (fast) 1 1 0.98 1 0.01 0
TLB Bernstein’s A�ack Vu  Va  Vu (slow) 0.99 1 0.99 1 0.01 0

SA TLB
A�ack Category Vulnerability Type C
TLB Evict+Probe Vd  Vu  Ad (slow) 0
TLB Prime+Time Ad  Vu  Vd (slow) 0

TLB Flush+ Reload Ad  Vu  Aa (fast) 0
TLB Prime+Probe Ad  Vu  Ad (slow) 1
TLB Evict+Time Vu  Ad  Vu (slow) 1

TLB Internal Collision Ad  Vu  Va (fast) 1
TLB Bernstein’s A�ack Vu  Va  Vu (slow) 1

SA TLB SP TLB
A�ack Category Vulnerability Type C C
TLB Evict+Probe Vd  Vu  Ad (slow) 0 0
TLB Prime+Time Ad  Vu  Vd (slow) 0 0

TLB Flush+ Reload Ad  Vu  Aa (fast) 0 0
TLB Prime+Probe Ad  Vu  Ad (slow) 1 0
TLB Evict+Time Vu  Ad  Vu (slow) 1 0

TLB Internal Collision Ad  Vu  Va (fast) 1 1
TLB Bernstein’s A�ack Vu  Va  Vu (slow) 1 1

SA TLB SP TLB RF TLB
A�ack Category Vulnerability Type C C C
TLB Evict+Probe Vd  Vu  Ad (slow) 0 0 0
TLB Prime+Time Ad  Vu  Vd (slow) 0 0 0

TLB Flush+ Reload Ad  Vu  Aa (fast) 0 0 0
TLB Prime+Probe Ad  Vu  Ad (slow) 1 0 0
TLB Evict+Time Vu  Ad  Vu (slow) 1 0 0

TLB Internal Collision Ad  Vu  Va (fast) 1 1 0
TLB Bernstein’s A�ack Vu  Va  Vu (slow) 1 1 0

2

index3 will be randomized to make the eviction indeterministic.
Next, (5) the Random Fill Logic will modify the response and prevent
the random fill result from being sent to the processor. Then, (6)
the original page address is finally requested, and “no fill” fill_type
will be sent to the TLB to obtain the translation. Finally, (7) this
address will be stored in the buffer, without modifying TLB entries,
and be sent back to the processor.

3.4 Security Evaluation
The three-step model and the security benchmarks were used to
analyze the security of the new designs in simulation. Based on the
analysis, we showed the proposed secure TLBs could defend not
only against the previously publicized attacks, but also against other
new timing-based attacks in TLBs found using our new three-step
modeling approach.

As demonstrated in Table 3, while evaluating the security of the
standard and secure TLBs using the micro security benchmarks
running on RISC-V simulation, we showed that results matched
with theoretical mutual information calculation. For the specific
security effectiveness of different TLBs, our security evaluation
showed that standard SA TLBs could defend 10 types of external
hit-based related attacks. For the new hardware defenses, our eval-
uation showed that SP TLB was able to further prevent 4 more
external miss-based vulnerabilities, in total defending 14 out of 24
vulnerabilities. Meanwhile, the RF TLB was able to prevent all of
the 24 possible timing-based vulnerabilities in TLBs. The proposed
secure TLBs could defend not only against the previously publicized
attacks, but also other possible timing-based attacks in TLBs found
using our new three-step modeling approach.

3.5 Performance Evaluation
Finally, we were able to maintain the performance overhead to a
small number while protecting the fully security. We tested perfor-
mance by synthesizing the hardware on FPGAs, and running RSA
decryption tests alongside SPEC 2006 benchmarks under Linux on
the FPGAs. To help understand the impact of the new secure TLBs
on the system performance, a RISC-V Rocket Core based processor

3The TLB set index to be randomized has bit size 𝑆𝑛 = 𝑙𝑜𝑔2 [𝑚𝑖𝑛 (𝑠𝑠𝑖𝑧𝑒, 𝑛𝑠𝑒𝑡𝑠 ) ],
where𝑛𝑠𝑒𝑡𝑠 is the number of sets in TLB. A random set index will be generated within
the region [𝑠𝑏𝑎𝑠𝑒 [𝑆𝑛 − 1, 0], 𝑠𝑏𝑎𝑠𝑒 [𝑆𝑛 − 1, 0] +𝑚𝑖𝑛 (𝑠𝑠𝑖𝑧𝑒, 𝑛𝑠𝑒𝑡𝑠 ) ] for random
fill.



Secure TLBs , ,

with the new secure TLBs were synthesized on the Zynq ZC706
and ZedBoard FPGAs. This allowed for running security software
alongside SPEC 2006 benchmarks and a full Linux system. Based
on our evaluation, for example, the SP TLB had 3x misses per kilo-
instructions (MPKI) compared to the standard SA TLB, while the
RF TLB had 9% more MPKI than the standard TLB. For the RF TLB,
the hardware cost of the defenses was about 8% more logic.

4 DISCUSSION AND FUTURE WORK
Research on timing-based attacks (and defenses) in processors has
a long history. Most mitigations of timing-based attacks in the
memory subsystem have focused on the design of secure caches.
Meanwhile, our work focused on preventing timing-based attacks
due to TLBs and presented the first hardware defenses for TLBs.
In our securing TLBs work, both the systematic approach of find-
ing all possible TLB timing side-channel vulnerabilities and the
hardware defenses of TLBs regarding timing side-channel vulnera-
bilities were presented as a promising methodology and solutions,
respectively, to examine and tackle TLB timing side channels. Espe-
cially, our hardware defenses were tested in real hardware (FPGA),
while much of the existing work is evaluated in simulation only.
Therefore, our work can give more confidence and possibly be more
easily adapted to be used in industrial and commercial products.
In addition, although it has been only two years since this work’s
publication, it has already been cited by 14 different research groups
and projects as well as exploited ideas introduced in further papers,
such as [4, 12, 16, 19, 20, 23]. The methodology and solution pre-
sented in our work have thus already influenced other research
projects on timing side-channels and TLBs.

Firstly, the three-step modeling method for TLBs inspired our
prior work [4] which focused on timing-based vulnerabilities in
caches. Thus the three-step modeling method demonstrated in TLBs
(and previously in caches) is emerging as a promising method for
analyzing cache-like structures in processors. Further, the TLB (and
caches) work checked the soundness of the three-step model, and
show that it is possibly a generic approach to other timing-channel
analyses.

Our hardware defenses for TLBs have further been shown to be
effective even with newly-developed attacks. For example, PTham-
mer [23] developed new attacks focusing on eviction-based cache
and TLB attacks. It exploited the fact that cache and TLB were
shared between sensitive data and non-sensitive data. It also con-
firmed our hardware defenses are effective and can readily mitigate
PThammer by partitioning or randomizing the TLB. Without the
use of our secure TLBs, the PThammer could easily compromise
TLBs and lead to information leaks in real systems.

Meanwhile, our TLB work has also been shown in work [20]
to be able to prevent transient execution attacks. The recent Spec-
tre [10] and Meltdown [11] attacks have shown that timing-based
channels are more dangerous than previously thought. Whether
by themselves or in combination with speculative execution such
as the Spectre and Meltdown attacks, the timing-based channels
in microarchitecture pose threats to system security, and should
be mitigated. Our work proposed hardware defenses to mitigate
timing-based channels in TLBs, therefore, it is effective even for
the new transient execution attacks which utilize TLB microarchi-
tecture timing-based channel.

Our hardware defense ideas have also been expanded by others.
SMT-COP [16] extended the processor defenses for Simultaneous
MultiThreading (SMT). SMT-COP provided a system that eliminated
all known side-channels through shared execution logic, including
ports and functional units, on SMT processors. This work helped
resolve execution logic side-channels in SMT architectures and
extends the TLB timing side-channel defenses more focusing on
the SMT side.

Research based on our work has clearly acknowledged the ef-
fectiveness of our modeling approach, and the hardware defense
methods for the TLB timing side-channel vulnerabilities [12, 15, 19].
We believe that our work on securing the TLBs from the timing-
based channels has already created impact and will continue to
serve as a catalyst for higher security, especially in future computer
architectures.

5 CONCLUSION
This paper proposed a novel three-step modeling approach that
exhaustively enumerates all possible TLB timing-based vulnera-
bilities. It showed how to automatically generate micro security
benchmarks that test for the TLB vulnerabilities. It gave details of
two new hardware secure TLB designs: a Static-Partition (SP) TLB
and a Random-Fill (RF) TLB. The simulations confirmed the theo-
retical channel capacity calculations and full system performance
on FPGA showed that the new secure TLBs are as good as regular
TLBs, while protecting against the various attacks. The proposed
secure TLBs can defend not only against the previously publicized
attacks, but also other possible timing-based attacks in TLBs found
using our new three-step modeling approach.
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