Shuwen Deng
Tsinghua University
Beijing 100190, China

Wenjie Xiong

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061 USA

Editor’s notes:

This article reveals timing-based side-channel and covert-channel attacks
from the translation look-aside buffers (TLBs) and discusses how to design

secure TLBs.

—Gang Qu, University of Maryland, USA all

Il RESEARCH ON TIMING-BASED ATTACKS (and
defenses) in processors has a long history. To date,
researchers have focused mainly on the memory
subsystem when showing the different timing-based
attacks, and have, for example, demonstrated a
plethora of timing-based channels in caches [6].
All the attacks have shown the possibility to extract
sensitive information via timing-based channels, and
often the focus is on extracting cryptographic keys.

Timing-based channels in translation look-aside
buffers (TLBs), which is the focus of this work, are
distinct from caches in that they are triggered by
memory translation requests, not by direct access to
data. They also have a different granularity (pages
versus cache lines for data or instruction caches),
and, in commercial processors, TLBs have more
complicated logic, compared to caches, due to sup-
port for various memory page sizes. Furthermore,
defending cache attacks does not protect against
TLB attacks [4]. Moreover, there has not been a sys-
tematic security analysis of the TLB vulnerabilities,
nor concrete proposals for secure TLB design. This
article provides both.

This work starts by providing a novel three-step
modeling approach to enumerate all possible TLB

Digital Object Identifier 10.1109/MDAT.2023.3287938
Date of publication: 27 June 2023, date of current version:
21 February 2024.

March/April 2024

Authorized licensed use limited to: Tsinghua University. Downloaded on December 25,2025 at 13:23:55 UTC from IEEE Xplore. Restrictions apply.

Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC

Designing Secure TLBs

Jakub Szefer
Yale University
New Haven, CT 06510 USA

timing-based vulnerabili-
ties exhaustively. Rather
than modeling software
attacks, the three-step
approach analyzes
possible victim or

attacker behaviors that
affect the TLB state. In total, 24 possible vulnerabili-
ties were found, of which only eight map to existing
attacks [4], [5]. We believe that the other 16 are new
attack types not previously considered. Based on
the three-step model, microsecurity benchmarks are
then semiautomatically generated.

Armed with the threestep model and the security
benchmarks, the security of different typical configura-
tions of TLBs is tested using Rocket core implementa-
tion of the reduced instruction set computer (RISC)-V
processor architecture. Standard TLBs, that is, fully-asso-
ciative (FA) or set-associative (SA) TLBs, which include
process identifiers (IDs), for example, address space
identifier (ASID) in RISC-V architecture, are shown to
be vulnerable to many of the attacks. Consequently,
this work presents new defenses. Especially, we pres-
ent two new secure TLB designs in hardware: a stat-
ic-partition (SP) TLB and an RF TLB, the latter of which
is more complex but can defend against all attacks.
These are the first hardware defenses to TLB attacks. To
help understand the impact of the new secure TLBs on
the system performance, a RISC-V Rocket core-based
processor with the new secure TLBs is synthesized on
the Zynq ZC706 and ZedBoard FPGAs.

Background

This section reviews existing work on caches
(most closely related to TLBs) and the few existing
works on TLBs.

2168-2364/230©2023 IEEE

40

The 2021 Workshop on Top Picks in Hardware and Embedded Security

Timing-based attacks and caches

In modern processor caches, there are timing dif-
ferences between cache hits (fast) and cache misses
(slow), and these variations in timing have been
exploited to leak sensitive information. Especially,
a large number of different cache timing-based
side-channel and covert-channel attacks have been
presented in the literature [6]. And, many secure
hardware cache designs aim to prevent these differ-
ent attacks [9]. However, even if the cache-based
attacks are mitigated, TLB-based attacks are the next
attack vector that malicious attackers might use—
and hence are the focus of this work.

Timing-based channels in TLBs

Compared with caches, there are two published
TLB-based timing attacks.! TLBleed attack [4] uses
timing-based channels combined with machine
learning to create an attack that can leak bits of secret
keys from the Rivest-Shamir-Adleman encryption
(RSA) algorithm (they also show an attack for the
Edwards-curve digital signature algorithm (EdDSA)
algorithm). They leverage the prime + probe attack
strategy previously applied in processor caches.

Before TLBleed, the double page fault attack [5]
leverages the cache collision attack strategy previously
applied in processor caches. It requires the victim to
access some kernel memory pages twice and uses the
fact that access to previously allocated kernel virtual
pages will bring in TLB entries, even if a page fault is
generated and accesses permission checks failed. The
timing of the second access thus reveals information
on whether an inherent TLB hit happened.

Beyond these individual attacks, there are neither
exhaustive categorizations nor models of possible
TLB timing-based attacks—as are proposed in this
work.

Existing approaches to securing TLBs

Currently, we are only aware of five approaches
(mostly software-based) that can help mitigate some
TLB attacks, but are not as effective as our hard-
ware-secure TLBs.

First, today’s Linux system makes use of virtual
addresses and process IDs, for example, ASID on
RISC-V, to identify different processes in the SA

'The Leaky Cauldron [8] attack is also related to TLB and targets Intel SGX.
However, it does not depend on hits and misses in the TLB; instead, it relies on
the assumption that the attacker can evict the enclave entries in the TLB, so an
enclave’s memory access will trigger a page table walk, and the malicious OS can
get the page access pattern trace.

TLBs to do the partition. Second, in the Sanctum
[1] secure processor design, the per-core SA TLBs
are flushed by a security monitor software when-
ever a core switches between the enclave and
nonenclave codes. Third, Intel SGX also flushes
SA TLBs during switching between the enclave
and non-enclave codes. Fourth, the InvisiSpec [11]
work proposes to prevent observable changes to
data translation lookaside buffers (D-TLBs) only
for speculative attacks. Fifth, some processors
employ FA TLBs, which, by design, do not have
different TLB sets (there is only one set).

Unlike all the existing work, this work presents
two new hardware secure TLB designs, including the
RF TLB, which can prevent all types of timing-based
attacks according to the threestep model, and has
about the same performance as an SA TLB.

Framework

Our article’s key idea focused on the new attack
vector in modern processors: the timing-based chan-
nel attacks due to the TLBs. We provide a systematic
approach to analyze the full set of vulnerabilities
and provide corresponding hardware defenses to
mitigate them.

Modeling TLB timing-based vulnerabilities

We first presented a novel three-step modeling
approach that was used to exhaustively enumerate
all possible TLB timing-based vulnerabilities.

Threat model and assumptions

A TLB timing-based attack involves an attacker
and a victim. In many cases, they are executing on
the same processor core, a set of cores, or a set of
hyperthreads that share the same physical TLB, but
this is not required for all types of attacks. In this
article, we use A and V to denote the attacker and
the victim with different process IDs. For the attacks
where the attacker and the victim are in the same
address space, the attacker can trigger some known
address memory operation as if it were the victim,
for example, states V,and Vs in Table 1 can be
actually attackers.

We assume, in hardware, all memory operations
are identified by the virtual memory address, vaddr
(including null address in the case of certain TLB
flush-related operations) and the process ID (includ-
ing null process ID in the case of certain TLB flush-re-
lated operations), for example, ASID in RISC-V.

IEEE Design&Test

Authorized licensed use limited to: Tsinghua University. Downloaded on December 25,2025 at 13:23:55 UTC from IEEE Xplore. Restrictions apply.

The victim is assumed to have some security-criti-
cal memory range, x, within which the access pattern
depends on the secret the attacker wants to learn.
An example of a security-critical region is the set of
page entries accessed during the execution of the
RSA functions of libgcrypt, where the value of the key
bit (either 0 or 1) determines which specific mem-
ory pages are accessed. The timing of the accesses to
the security-critical memory range is affected by the
timing of TLB-related operations, and it can reveal
information such as cryptographic keys.

The attacker is assumed to know the victim
software, for example, what implementation of a
cryptographic algorithm it uses, but not the secret
cryptographic keys. He or she is assumed to know the
size, ssize, and the location, sbase (in virtual memory)
of the security-critical memory range x. The attacker
can measure the timing of its own memory operations
or the operations of the victim, but cannot access the
actual sensitive data being processed by the victim.

Introduction of the three-step model

One observation we make is that all existing TLB
timing-based attacks take three steps. In Step 1, a
memory operation is performed, placing the TLB
block (also called TLB slot or TLB entry) in a known
initial state (e.g., a new translation is put into the
block or block is invalidated).

Then, in Step 2, a second memory operation
alters the state of the TLB block from the initial state.
Finally, in Step 3, a final memory operation is per-
formed, and the timing of the final operation reveals
some information about the relationship among the
addresses from Step 1, Step 2, and Step 3. Attacks
with more than three steps can be reduced to a three-
step attack (details are in our article [2]). Table 1 lists
all the 10 possible states of the TLB block for each
step of our three-step model. Each step in the model
represents a state of a TLB block.

Derivation of all TLB vulnerabilities

Based on the states possible in each step, there
are in total 10 * 10 * 10 =1,000 combinations of pos-
sible three steps. We developed an algorithm that
can process the list of all three steps and eliminates
ones that cannot lead to an attack based on a list of
derived rules (details mentioned in our article [2]).

After applying the script that implements our sim-
plification algorithm, 34 three-step access patterns
remain as candidates for possible timing-based TLB

March/April 2024

Table 1. Ten possible states for a single TLB block in our three-
step vulnerability modeling procedure.

l States [Description ‘

The TLB block contains translation for a memory address u,
translation which is placed in the TLB block due to a memory
access by the victim. Attacker does not know u, but u is from
Vu arange x of memory locations, range which is known to the
attacker. The address u may have same page index as A, or
V, and thus conflict with them in the TLB block. The goal of
the attacker is to learn the page address or index of V;,.

The TLB block contains translation for a memory address a.
The translation is placed in the TLB block due to a memory
Ag access by the attacker, A4, or the victim, V,. The attacker
or knows the address a, independent of whether the access was
Va by the victim or the attacker themselves. The address a is
from within the range of sensitive locations x. The address a
may or may not be the same as the address u.

The TLB block contains translation for a memory address
a?1@s_ The translation is placed in the TLB block due to a

A o
adlias| memory access by the attacker, A galias» or the victim, V_arias .

or .
The address a?%4S is within the range x. It is not the same as

a, but it has same page index and can map to the same TLB
block, i.e. it “aliases” to the same block.

Vaalias

The TLB block previously containing translation for a memory
address is now invalid. The translation is “removed” from the
Aino | TLBblock by the attacker A;p, or the victim Vj,, as the result

or of TLB block being invalidated, e.g. due to synchronization
Vino updates to in-memory memory-management data structures
or due to context switch between processes which causes OS
to flush per-core TLB entries.

The TLB block contains translation for a memory address d.

A
o(ri The translation is placed in the TLB block due to a memory
v access by the attacker, Ay, or the victim, V. The address d is
d not within the range x.
. Any data, or no data, can be in the TLB block. The attacker

has no knowledge of page address in this TLB block.

attacks. These 34 access patterns are further man-
ually reduced to a list of 24 types of timing-based
TLB vulnerabilities, listed in Table 2. Due to space
limitations, details on why the 10 patterns cannot
form vulnerabilities are not included in the article.

To summarize all the vulnerability types, Table 2
shows the list of all 24 vulnerability types, along with
more coarse-grained attack strategies, which cover
one or more vulnerability types. The list of vulner-
ability types can be further collected into four sim-
ple macrotypes: 1) internal interference miss-based
(IM); 2) internal interference hit-based (IH); 3) exter-
nal interference miss-based (EM); and 4) external
interference hit-based (EH). Most of the vulnerability
types have not been explored before, except some
mapping to existing double-page fault attacks [5]
and the TLBleed attack [4].

41

Authorized licensed use limited to: Tsinghua University. Downloaded on December 25,2025 at 13:23:55 UTC from IEEE Xplore. Restrictions apply.

The 2021 Workshop on Top Picks in Hardware and Embedded Security

Table 2. Timing-based TLB vulnerabilities. The Attack strategy
column gives our common name for each set of one or more
specific vulnerabilities that would be exploited in an attack

in a similar manner (many of the names are borrowed from
cache timing-based attacks in literature). The Vulnerability type
column gives the three steps that define each vulnerability. For
Step 3, fast indicates that a TLB hit must be observed, while
slow indicates that a TLB miss must be observed. The Macro
type column proposes the categorization of the vulnerability
belongs to. “E” is for external interference vulnerabilities. “I” is
for internal interference vulnerabilities. “M” is for miss-based
vulnerabilities. “H” is for hit-based vulnerabilities. The Attack
column shows if a type of vulnerability has been previously
presented in the literature.

Sﬁt;secgy Vulnerability Type Macro Attack
Step 1 [Step 2 [Step 3 Type
Aino Vu Va (fast) IH (1)
TLB ‘va Ku “ja (fast) IH (1)
Internal d el a (fast) IH 1)
Collision Va Vu Va (fast) IH (1)
A alias Vu Va (fast) H (1)
V atias Vu V, (fast) IH (1)
Aino Vu Ag (fast) EH new
Vino Vu Ag (fast) EH new
TLB Flush Ag Vu Ag (fast) EH new
+ Reload Vya Vi Ag (fast) EH new
Aaalias Vu Aa (fast) EH new
Vaalias Vu Aa (fast) EH new
TLB Evict Vu Ag Vi (slow) EM new
+ Time Vi A, Vi (slow) EM new
TLB Prime Ag Vu Ag (slow) EM 2)
+ Probe Aq Va Ag (slow) EM @)
TLB Vu Va Vi (slow) M new
version of Vu Va Vi (slow) IM new
Bernstein’s Vy Va Vg (slow) M new
Attack V. v, Va Glow) IM | new
TLB Evict Va Vu Ag (slow) EM new
+ Probe Va Vi Ag (slow) EM | new
TLB Prime Ag Vu Va (slow) M new
+ Time Ag Vu Vg (slow) M new

(1) Double Page Fault attack [5].
(2) TLBleed attack [4].

Key contribution

The key contribution of this article was to show
the first systematic modeling approach that can be
used to reason about all timing-based attacks on
TLBs. Our work developed a novel model of the
attacker and victim behaviors in relation to the TLB
states. Rather than modeling software attacks, the
three-step approach analyzed all possible victim
or attacker behaviors that affected the TLB states.
All possible combinations of the attacker and vic-
tim behaviors were evaluated and systematically
reduced to only three-step behaviors that can result

42

in timing-based attacks. In total, 24 possible vulner-
abilities were found, including 16 new attack types
not previously considered.

Microsecurity benchmarks

Building on the three-step model, our article then
showed how to automatically generate microsecu-
rity benchmarks to test TLBs to check if they are vul-
nerable to each of the attack types. To generate the
microsecurity benchmarks, we leverage a Python
script that follows a three-step template to gener-
ate assembly code of all the types of vulnerabilities
shown in Table 2.

We use channel capacity [3] to quantify the
amount of information about the secret address
translation that the attack gains from a specific tim-
ing-based attack.

Secure TLB designs

After showing the insecurity of standard TLBs, our
work also proposed the first hardware defenses for
TLB attacks: the new SP TLB and the new RF TLB
and realize them in a Rocket core implementation of
the RISC-V processor. Especially, RF TLB was more
complex in logic but could defend against all of the
attacks compared to SP TLB.

The first type of TLB, SP TLB, is an SA TLB where
certain ways are assigned to a victim process and other
ways are assigned to all remaining processes, which by
default are assumed to be potential attacker processes.
The process ID, for example, ASID in RISC-V, is used to
differentiate the victim and the attacker. The number of
ways assigned to each is set at design time but could be
further extended to be dynamic at run time.

To protect all the vulnerabilities, we propose RF TLB,
which can decorrelate the requested memory access
from actual TLB entries that are brought into the TLB,
making the attacker’s observations nondeterministic.
For TLB hits, the behavior is the same as the SA TLB. For
TLB misses, depending on the memory address region,
a random address translation will be fetched into the
TLB (“random fill"), while the originally requested
address is directly sent back to the central processing
unit (CPU) without filling the TLB (“no fill”).

The RF TLB also introduces the Sec bit that is used
to identify certain memory translation entries are
belonging to secure data.

RF TLB block diagram is shown in Figure 1b. All
the bold lines and blocks are the added hardware
and logic extension. In the TLB array, an extra field (a

IEEE Design&Test

Authorized licensed use limited to: Tsinghua University. Downloaded on December 25,2025 at 13:23:55 UTC from IEEE Xplore. Restrictions apply.

(1) Request from CPU

Processor

A
(7) Response

to CPU
Random Fill]
Logi (5) Modify ___]
Oglti Y Response < '
_-=~" |Random Fill| B '
L - Engine |— '
" - !
— (4) Random
RERRRRRRRE- LR bb 1 Fill
: demand , (6) No
: address 1 (3) Send Fil LDCache
' ' SecR A
; Tothe ! signal | (2) Probe
' [Rne Random Fill | M 1 vy
' Generation .
] ' — TLB
S N N (o]
1
: [sbase] [ssize] T
Tmmmmmmmmmmmmmmmmmnnnnnes I I Page Table Walker I
(a) (b)

Figure 1. (a) RFE. (b) RF TLB block diagram.

secure bit Sec, either 0 or 1) is added to each of the TLB
entries to indicate whether it contains an address trans-
lation within the secure region. In addition, the exist-
ing process ID field (e.g., ASID in RISC-V) in each TLB
entry is used to differentiate the victim and the attacker
process. By default, we set specific process ID 1 for the
victim program and all other ASIDs to be attackers.

An extra set of registers is added to store the pro-
cess ID of the victim process and the start address
sbase and the size ssize of the secure region (the
base and size are defined in terms of pages, usually
4KiB). The registers can be managed by a trusted
operating system (OS) to change the victim process
ID and secure regions when different victim pro-
grams need protection.

An extra buffer is added which stores the equiva-
lent of one TLB entry. It is used as temporary storage
for translation data that is returned to the CPU, but
which should not be placed in the TLB. It will be
cleaned up after the address is returned.

The RF engine (RFE), shown in Figure la, is
used to generate addresses that should be used for
TLB updates.? In Figure 1b (1 and 2), the “no fill”
fill_type will first be sent to TLB. On a TLB miss, the
mhas pregenerated page table entries that may correspond to the
random virtual address generated by the RFE, which may not be actually used by

the original program, to prevent OS- or software-based timing attacks due to page
faults when a page entry for a random address is looked up by the TLB.

March/April 2024

TLB will probe the page address without filling TLB
entries to see if the chosen entry has a valid secure
page address translation. Then, (3) the Secbit is set
and sent back. Next, (4) if it is a request to the secure
region or the Secybit is one, an RF request will be trig-
gered. If the original request is in the secure region,
a random virtual page address is derived from RFE
within the secure region [sbase, sbase + ssize], and
a translation will be put into the TLB entry. If the orig-
inal request comes from the nonsecure region, most
of the higher bits of the requested address remain
the same while the bits that correspond to the TLB
set index® will be randomized to make the eviction
indeterministic. Next, (5) the RF logic will modify the
response and prevent the RF result from being sent
to the processor. Then, (6) the original page address
is finally requested, and “no fill” fill_type will be sent
to the TLB to obtain the translation. Finally, (7) this
address will be stored in the buffer, without modify-
ing TLB entries, and be sent back to the processor.

Security evaluation

The threestep model and the security bench-
marks were used to analyze the security of the
The TLB set index to be randomized has bit size S, = log2[min(ssize,nsets)], where

nsets is the number of sets in TLB. A random set index will be generated within the
region [sbase[S,- 1, 0],sbase[S, - 1, 0] + min(ssize,nsets)] for RF.

43

Authorized licensed use limited to: Tsinghua University. Downloaded on December 25,2025 at 13:23:55 UTC from IEEE Xplore. Restrictions apply.

Table 3. Comparison of SA TLB, SP TLB, and RF TLB simulation
and theoretical results. C* and C represent mutual information
based on simulation and theoretical calculation, respectively.
Bold C* and C are the ones with a value of 0 or about 0, indicating
that this TLB can prevent the corresponding vulnerability. Small
numbers are rounded up. Some vulnerability types are not shown
to save space.

The 2021 Workshop on Top Picks in Hardware and Embedded Security

new designs in simulation. Based on the analysis,
we showed that the proposed secure TLBs could
defend not only against the previously publicized
attacks, but also against other new timing-based
attacks in TLBs found using our new three-step
modeling approach.

As demonstrated in Table 3, while evaluating the
security of the standard and secure TLBs using the
microsecurity benchmarks running on RISC-V simu-
lation, we showed that results matched with theoret-
ical mutual information calculation. For the specific
security effectiveness of different TLBs, our security
evaluation showed that standard SA TLBs could
defend 10 types of external hit-based related attacks.
For the new hardware defenses, our evaluation
showed that SP TLB was able to further prevent four
more external miss-based vulnerabilities, in total
defending 14 out of 24 vulnerabilities. Meanwhile,
the RF TLB was able to prevent all of the 24 possible
timing-based vulnerabilities in TLBs. The proposed
secure TLBs could defend not only against the previ-
ously publicized attacks, but also against other pos-
sible timing-based attacks in TLBs found using our
new three-step modeling approach.

Performance evaluation

Finally, we were able to maintain the performance
overhead to a small number while protecting the full
security. We tested performance by synthesizing the
hardware on FPGAs and running RSA decryption
tests alongside SPEC 2006 benchmarks under Linux
on the FPGAs. To help understand the impact of
the new secure TLBs on the system performance, a
RISC-V Rocket Core-based processor with the new
secure TLBs was synthesized on the Zynq ZC706 and

SA TLB SP TLB RF TLB

Attack Category Vulnerability Type cr| C cr| C cr| C
TLB Evict+Probe Vg ~> Vy ~ Ay (slow) 0 0 0 0 0 0
TLB Prime+Time Ag ~ V ~ Vg (slow) 0 0 0 0 0 0
TLB Flush+ Reload Ag ~ V, ~ A, (fast) 0 0 0 0 0 0
TLB Prime+Probe Ag ~> Vy ~> Ag (slow) || 0.99] 1 || 0.02| 0 || 0.01]| O
TLB Evict+Time Vi ~ Ag ~ V,, (slow) 1 1(/003]| 0 0 0
TLB Internal Collision Ag ~> Vy ~> V, (fast) 1 1 (/098] 1 (|0.01| 0
TLB Bernstein’s Attack | V, ~> V, ~> V,, (slow) || 0.99| 1 || 0.99| 1 || 0.01| O

44

ZedBoard FPGAs. This allowed for running security
software alongside SPEC 2006 benchmarks and a full
Linux system. Based on our evaluation, for example,
the SP TLB had 3x misses per kiloinstructions (MPKI)
compared to the standard SA TLB, while the RF TLB
had 9% more MPKI than the standard TLB. For the
RF TLB, the hardware cost of the defenses was about
8% more logic.

Discussion

Research on timing-based attacks (and
defenses) in processors has a long history. Most
mitigations of timing-based attacks in the memory
subsystem have focused on the design of secure
caches. Meanwhile, our work focused on pre-
venting timing-based attacks due to TLBs and pre-
sented the first hardware defenses for TLBs. In our
securing TLB work, both the systematic approach
of finding all possible TLB timing side-channel
vulnerabilities and the hardware defenses of TLBs
regarding timing side-channel vulnerabilities were
presented as promising methodologies and solu-
tions, respectively, to examine and tackle TLB
timing side channels. Especially, our hardware
defenses were tested in real hardware (FPGA),
while much of the existing work is evaluated in
simulation only. Therefore, our work can give
more confidence and possibly be more easily
adapted to be used in industrial and commercial
products.

The methodology and solution presented in
our work have already influenced other research
projects on timing side channels and TLBs. Our
hardware defenses for TLBs have been shown to
be effective even with newly developed attacks.
For example, PThammer [12] developed new
attacks focusing on eviction-based cache and TLB
attacks. It exploited the fact that cache and TLB
were shared between sensitive data and public
data. It also confirmed our hardware defenses are
effective and can readily mitigate PThammer by
partitioning or randomizing the TLB. Without the
use of our secure TLBs, the PThammer could easily
compromise TLBs and lead to information leaks in
real systems.

Meanwhile, our TLB work has also been shown in
work [10] to be able to prevent transient execution
attacks. The recent Spectre and Meltdown attacks
have shown that timing-based channels are more
dangerous than previously thought. Whether by

IEEE Design&Test

Authorized licensed use limited to: Tsinghua University. Downloaded on December 25,2025 at 13:23:55 UTC from IEEE Xplore. Restrictions apply.

themselves or in combination with speculative exe-
cution such as the Spectre and Meltdown attacks,
the timing-based channels in microarchitecture
pose threats to system security and should be miti-
gated. Our work proposed hardware defenses to mit-
igate timing-based channels in TLBs, and therefore,
it is effective even for the new transient execution
attacks which utilize TLB microarchitecture tim-
ing-based channels.

Research based on our work has clearly acknowl-
edged the effectiveness of our modeling approach
and the hardware defense methods for the TLB
timing side-channel vulnerabilities, for example,
[7]. We believe that our work on securing the TLBs
from the timing-based channels has already created
an impact and will continue to serve as a catalyst
for higher security, especially in future computer
architectures.

THIS ARTICLE PROPOSED a novel three-step mod-
eling approach that exhaustively enumerates all
possible TLB timing-based vulnerabilities. It showed
how to automatically generate microsecurity bench-
marks that test for TLB vulnerabilities. It gave details
of two new hardware-secure TLB designs: an SP
TLB and an RF TLB. The simulations confirmed the
theoretical channel capacity calculations and full
system performance on FPGA showed that the new
secure TLBs are as good as regular TLBs, while pro-
tecting against various attacks. The proposed secure
TLBs can defend not only against the previously
publicized attacks, but also against other possible
timing-based attacks in TLBs found using our new
three-step modeling approach. []

[l References

[1] V. Costan, I. A. Lebedev, and S. Devadas, “Sanctum:
Minimal hardware extensions for strong software
isolation,” in Proc. USENIX Secur. Symp., 2016, pp.
857-874.
D. Shuwen, W. Xiong, and J. Szefer, “Secure TLBs,”
in Proc. 46th Int. Symp. Comput. Archit., 2019, pp.
346-359.
[3] A.J. Goldsmith and P. P. Varaiya, “Capacity of fading
channels with channel side information,” IEEE Trans.
Inf. Theory, vol. 43, no. 6, pp. 1986—1992, Nov. 1997.
B. Gras, K. Razavi, H. Bos, and C. Giuffrida,
“Translation leak-aside buffer: Defeating cache side-
channel protections with TLB attacks,” in Proc. USENIX
Secur. Symp. (USENIX), 2018, pp. 955-972.

2

[4

March/April 2024

[5] R. Hund, C. Willems, and T. Holz, “Practical timing
side channel attacks against kernel space ASLR,’
in Proc. IEEE Symp. Secur. Privacy, May 2013,
pp. 191-205.

[6] C. Percival, “Cache missing for fun and profit,” 2005.

—

[Online]. Available: http://www.daemonology.net/
papers/htt.pdf

D. Skarlatos, Z. N. Zhao, R. Paccagnella, C. W.
Fletcher, and J. Torrellas, “Jamais vu: Thwarting

(7

—

microarchitectural replay attacks,” in Proc. 26th ACM
Int. Conf. Architectural Support Program. Lang.
Operating Syst., 2021, pp. 1061-1076.

W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V.
Bindschaedler, H. Tang, and C. A. Gunter, “Leaky

[8

—

cauldron on the dark land: Understanding memory
side-channel hazards in SGX,” in Proc. Conf. Comput.
Commun. Secur., 2017, pp. 2421-2434.

[9] Z.Wang and R. B. Lee, “New cache designs for

—

thwarting software cache-based side channel attacks,”
in Proc. ACM SIGARCH Comput. Archit. News, Vol. 35,
2007, pp. 494-505.

[10] W. Xiong and J. Szefer, “Survey of transient execution
attacks,” 2020, arXiv:2005.13435.

[11] M.Yan, J. Choi, D. Skarlatos, A. Morrison, C. W.
Fletcher, and J. Torrellas, “InvisiSpec: Making
speculative execution invisible in the cache hierarchy,”
in Proc. Int. Symp. Microarchit. (MICRO), 2018, pp.
428--441.

[12] Z.Zhang, Y. Cheng, D. Liu, S. Nepal, Z. Wang, and
Y. Yarom, “PThammer: Cross-user-kernel-boundary
rowhammer through implicit accesses,” 2020,
arXiv:2007.08707 .

Shuwen Deng is an assistant professor with the
Department of Electronic Engineering, Tsinghua Uni-
versity, Beijing 100190, China. She works on com-
puter architecture, hardware, and system security.
Deng has a BS in microelectronics from Shanghai
Jiao Tong University, Shanghai, China, and a PhD
from the Department of Electrical Engineering, Yale
University, New Haven, CT, USA. She is a Member
of IEEE.

Wenjie Xiong is an assistant professor with the
Bradley Department of Electrical and Computer
Engineering, Virginia Tech, Blacksburg, VA 24061
USA. Her research interests comprise physically
unclonable functions and side-channel attacks
and defenses. Xiong has a BS in microelectronics
and psychology from Peking University, Beijing,
China, and a PhD from the Department of Electrical

45

Authorized licensed use limited to: Tsinghua University. Downloaded on December 25,2025 at 13:23:55 UTC from IEEE Xplore. Restrictions apply.

http://www.daemonology.net/papers/htt.pdf
http://www.daemonology.net/papers/htt.pdf

46

The 2021 Workshop on Top Picks in Hardware and Embedded Security

Engineering, Yale University, New Haven, CT, USA.
She is a Member of |IEEE.

Jakub Szefer is an associate professor with
the Electrical Engineering Department, Yale Univer-
sity, New Haven, CT 06510 USA, where he leads
the Computer Architecture and Security Laboratory
(CASLAB). His research interests are at the intersec-
tion of computer architecture, hardware security, and
FPGA security. Szefer has a BS with highest honors in
electrical and computer engineering from the Univer-
sity of lllinois at Urbana-Champaign, Champaign, IL,
USA, and an MA and a PhD in electrical engineering

from Princeton University, Princeton, NJ, USA, where
he worked with Prof. Ruby B. Lee on secure hard-
ware architectures. He is a Senior Member of IEEE.

Il Direct questions and comments about this arti-
cle to Shuwen Deng, Tsinghua University, Beijing
100190, China; shuwend@tsinghua.edu.cn.

IEEE Design&Test

Authorized licensed use limited to: Tsinghua University. Downloaded on December 25,2025 at 13:23:55 UTC from IEEE Xplore. Restrictions apply.

