
CiMSAT: Exploiting SAT Analysis to Attack Compute-in-Memory
Architecture Defenses

Jianfeng Wang
Huazhong Yang
Shuwen Deng∗
Xueqing Li∗

Electronic Engineering, Tsinghua University
Beijing, China

wjf22@mails.tsinghua.edu.cn,{yanghz,shuwend,xueqingli}@tsinghua.edu.cn

Abstract
Compute-in-memory (CiM) architecture is an emerging energy-
efficient processing paradigm that has attracted widespread atten-
tion in AI and Internet of Things (IoT) applications. To protect
statically stored sensitive data in CiM, designers have implemented
various hardware obfuscation techniques in CiM architectures.
However, we observe that existing CiM obfuscation defense strate-
gies are based on straightforward static-key deployment strategies,
which pose vulnerabilities from the perspective of key-pruning
algorithms for de-obfuscation.

This work proposes CiMSAT, a CiM de-obfuscation method-
ology based on Boolean satisfiability (SAT) theory. We conduct
the first security analysis specifically tailored to the storage and
mixed-signal computing features of CiM architecture, which are
two key challenges to de-obfuscate existing state-of-the-art CiM
defenses. To model storage units, we innovatively fit and utilize the
"no-inference-value" obfuscated data for function approximation.
To reconstruct mixed-signal circuits, we design bias-tolerant SAT
to address the biases introduced by the approximation. With the
proposed workflow, we investigate and evaluate all the existing 14
CiM obfuscation architectures using our de-obfuscation framework.
We model a total of 176 defense vectors derived from different de-
fense techniques and parameters, among which 158 (90%) can be
de-obfuscated and returned the keys within 1,000 seconds and 172
(98%) defenses can be recovered within 105 seconds (approximately
one day). We further reload the keys into CiM simulators with ob-
fuscation, achieving an average of 97% and 95% accuracy recovery
in widely adopted MNIST and CIFAR-10 classification applications
in CiM obfuscation, respectively.

CCS Concepts
• Security and privacy → Security in hardware; Hardware
attacks and countermeasures.

∗Xueqing Li and Shuwen Deng are co-corresponding authors.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690251

Keywords
Compute-in-Memory, Hardware Obfuscation, SAT
ACM Reference Format:
Jianfeng Wang, Huazhong Yang, Shuwen Deng∗, and Xueqing Li∗. 2024.
CiMSAT: Exploiting SAT Analysis to Attack Compute-in-Memory Archi-
tecture Defenses. In Proceedings of the 2024 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’24), October 14–18, 2024, Salt
Lake City, UT, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3658644.3690251

1 Introduction
With the rapid development of AI and IoT, data-intensive applica-
tions such as computer vision (CV) and natural language processing
(NLP) have created a demand for energy-efficient processing. This
has made the Compute-in-Memory (CiM) paradigm a widely re-
searched and pursued direction currently [27, 49, 63]. By integrating
computing into storage, CiM architecture effectively reduces the sig-
nificant overhead caused by the frequent data movement between
on-chip processing units and off-chip memory, lowering the energy
consumption of data transfer by two orders of magnitude [51]. Con-
sequently, it emerges as a viable technology for overcoming the
storage wall bottleneck in traditional von Neumann architectures.

Although CiM architectures achieve energy-efficient process-
ing of large-scale data, on-chip storage also brings security issues,
introducing non-negligible CiM attacks and related defenses. Ex-
isting weight extraction attacks [15, 22, 28, 42, 57] pose threats to
the sensitive data in CiM architecture, particularly those with high
inference capabilities. CiM designers employ various protection
methods, primarily hardware obfuscation strategies, to safeguard
data confidentiality. Existing typical obfuscation structures can be
roughly divided into three categories: multiplexers-based (MUX)
obfuscation [3, 19, 55, 64, 66], XOR/XNOR logic-based obfuscation
[7, 24, 35–37, 65], and network-based obfuscation [56, 67, 68]. By
incorporating these structures into the CiM architecture and con-
trolling them with keys, the protected weight data can be computed
in obfuscated form, thus mitigating data piracy.

Nevertheless, we have identified a crucial weakness in existing
CiM obfuscation protection mechanisms that cannot be easily fixed
using existing methods. The major observation is that the security of
the existing CiM obfuscation originates from explicit key-related hard-
ware insertion. While increasing the key length can make it more
challenging for adversaries to determine the correct key vectors,
statically inserted keys, without high-overhead iterative encryption,
are easily detectable and exploitable. This provides an opportunity

3436

https://orcid.org/0009-0007-7091-5563
https://orcid.org/0000-0003-2421-353X
https://orcid.org/0000-0002-9782-5038
https://orcid.org/0000-0002-8051-3345
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3658644.3690251
https://doi.org/10.1145/3658644.3690251
https://doi.org/10.1145/3658644.3690251
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3658644.3690251&domain=pdf&date_stamp=2024-12-09

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jianfeng Wang, Huazhong Yang, Shuwen Deng∗ , and Xueqing Li∗

for the elimination of erroneous key possibilities. We also notice
that existing de-obfuscation algorithms cannot easily break CiM
obfuscation protection mechanisms. Studies [46, 48] have demon-
strated rapid key pruning for combinational obfuscated logic cir-
cuits. However, unique storage feature and analog computing feature
in CiM hardware make the combinational obfuscation methods un-
suitable for CiM obfuscation architectures. These two CiM-related
features make solving CiM de-obfuscation attacks non-trivial.

Based on the above observations, this paper proposes CiMSAT, a
CiM de-obfuscation attack framework, aimed at breaking existing
CiM obfuscation defenses. The de-obfuscation method for CiM is
based on the SAT problem analysis, a Boolean formula satisfiable
decision process in computer science. To accommodate the two
key challenges of attack state-of-the-art CiM obfuscation defenses,
which are the storage property and analog/mixed-signal computing
feature of CiM architectures, we conduct a two-step de-obfuscation
attack: function approximation reconstruction and bias-tolerant
SAT analysis. In the first step, we reconstruct the digitized ob-
fuscated architecture using the obfuscated weights and retain the
key-controlled ports as the key vectors to be solved. In the sec-
ond step, we propose two bias-tolerant SAT algorithms tailored for
analog/mixed-signal CiM obfuscation to recover keys and accuracy
in CiM-related applications.

From the evaluation results, CiMSAT successfully attacks the
CiM obfuscation mechanism and nearly fully recovers the perfor-
mance of CiM circuits. We evaluate the security of 14 state-of-the-
art of CiM obfuscation architectures, and CiMSAT is capable of
attacking all of them. Based on various defense techniques, fea-
tures and parameters, we set a total of 176 defense vectors, among
which 158 (90%) can be attacked and solved within 1,000 seconds
to obtain the key. Furthermore, 172 (98%) defense vectors can be
de-obfuscated within 105 seconds (approximately 1 day). We have
subsequently reloaded the solved keys into CiM simulators with
obfuscation, achieving average of 97% and 95% inference accuracy
recovery for widely-adopted MNIST and CIFAR-10 classification
applications in CiM obfuscation, respectively. We also summarize 9
sub-conclusions for different features and parameters, providing
insights for future CiM security design.

In summary, we list our main contributions as follows:

• Systematically analyse existing CiM attack and defense sce-
narios, and discover the weakness in existing CiM obfusca-
tion defense.
• Propose attack framework CiMSAT to break the current
mainstream CiM defenses with a two-step de-obfuscation
attack flow.
– Overcome de-obfuscation difficulty on storage compo-
nents in addition to computing circuits.

– Implement attack framework to recover analog-domain
CiM (take up 70% of all CiM circuits) for the first time,
along with digital CiM.

• Successfully attack 14 state-of-the-art CiM defenses, recover
sensitive obfuscated weight data and execute efficient key
pruning for all of 176 different defense vectors in total, of
which 158 (90%) can be attacked and solved within 1,000 sec-
onds, and further recover averagely more than 95% accuracy
on MNIST and CIFAR-10 applications.

Keys

…

Output Ports

W11 W12 W1n

W21 W22 W2n

Wm1 Wm2 Wmn

Driver

… …

…

…

…

…

In
pu

t P
or

ts

In
pu

t P
or

ts

Output Ports

R
ow

O
bf

us
ca

tio
n

Driver

Column Obfuscation

(a) (c)

IN1

IN2

INm

…

IN1

IN2

INm
…

IN ADC

W
IN

O
ut
pu
t…

W
IN

!

…W
IN

! Digital
Adder O

ut
pu
t

Analog CiM

Digital CiM

(b)

W

Figure 1: CiM hardware structure diagram. (a) Schematic of
sub-array in CiM architecture, merging storage and comput-
ing in the crossbar. (b) Digital and analog CiM diagram. (c)
Schematic of CiM obfuscation: key-controlled obfuscation
and obfuscate weights.

2 Background and Related Works
This section sequentially introduces the background of CiM archi-
tecture, attacks and defenses of CiM, and SAT-related knowledge.

2.1 CiM Architecture
CiM architecture [1, 27, 49, 63], also known as IMC (in-memory
computing) or PIM (process-in-memory), is a novel paradigm that
differs from traditional von Neumann architecture. The most sig-
nificant characteristic is the fusion of data storage and computing.
As shown in Figure 1(a), CiM integrates data storage and comput-
ing through on-chip memory sub-array with crossbar nature. By
storing a large amount of weight data in crossbars, CiM greatly
reduces the energy overhead of data on/off-chip movements.

The crossbar array in CiM architecture can accelerate deep learn-
ing algorithms by supporting the primary operation of Vector-
Matrix Multiplication (VMM). For instance, in Figure 1(a), the
weights (𝑊𝑖 𝑗) of a model can be mapped into the crossbar array of
the CiM architecture, while input vectors (𝐼𝑁𝑖) are input through
the row ports in parallel. The corresponding components (𝑊𝑖 𝑗 and
𝐼𝑁𝑖) are multiplied within the same row 𝑖 and accumulation within
the same column 𝑗 , i.e., 𝑜𝑢𝑡𝑝𝑢𝑡 𝑗 =

∑𝑚
𝑖=1 𝐼𝑁𝑖 ·𝑊𝑖 𝑗 , with the comput-

ing results being output from the output ports.
Although both the inputs and outputs of the crossbar array are

digital values, the intermediate computing processes can be divided
into digital domain and analog/mixed-signal domain computing
(hereafter referred to as digital and analog CiM). As illustrated in
Figure 1(b), for digital CiM, architecture employs digital adders
combined with storage arrays to perform VMM. For analog CiM,
the architecture utilizes the accumulation of analog signals, such as
current, in the column dimension to replace digital domain adders.
The analog results are then quantified through an Analog-to-Digital
Converter (ADC) to obtain digital results.

2.2 CiM Security: Attack and Defense
The security of CiM has yet to be widely formalized, to the best of
authors’ knowledge. Side-Channel Attacks (SCA) are mainly uti-
lized to obtain sensitive data in CiM systems, enabling the analysis
of the timing and power consumption of CiM operations, thereby
threatening the confidentiality of the model [44, 45, 58]. In addition
to data theft, Ensan et al. [15] achieved efficient reverse engineering

3437

CiMSAT: Exploiting SAT Analysis to Attack Compute-in-Memory Architecture Defenses CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

using SCA. For CiM integrity, there is very limited attacks against
the CIM architecture. Staudigl et al. [47] conducted a rowhammer
attack on RRAM CiM, and Huang et al. [26] tailored Trojan designs
for CiM computing patterns to implement covert attacks.

To mitigate the loss caused by attacking the confidentiality of
CiM data, the most mainstream defense is data obfuscation. As
shown in Figure 1(c), CiM obfuscation design mainly consists of
two stages. Defenders first add key-controlled obfuscation logic to
control the row or column, and then store ciphertext-form weight
into the crossbar related to the keys. Once the data are obfuscated
into ciphertext, they lose the application value unless the correct
keys is adopted. There are studies [3, 7, 19, 24, 35–37, 55, 56, 64–
68] that have made different efforts in various design metrics such
as obfuscation techniques, overhead, and performance. In addi-
tion to obfuscation, system designers employ other defense tech-
niques such as introducing disturbances like noise [8, 9], fine-tuning
weights [25], or designing novel circuit structures [52]. However,
the design complexity of these methods are much higher [43] and
have not been widely discussed.

2.3 SAT Problem and SAT Attack
In logic and computer science, the Boolean satisfiability problem
(SAT problem) is the problem of determining if there exists an
interpretation that satisfies a given Boolean formula [59]. From the
logic circuit perspective, a formula, built from logic variables and
logic operators (AND, OR, NOT, etc.), is satisfiable if it can be made
TRUE by assigning a set of logical values (i.e., TRUE, FALSE) to
the variables. For example, the expression “A AND B” is satisfiable
because when the SAT solver solves "A AND B = True", it can find
a set of satisfying solutions: A=B=True.

Hardware security researchers have applied SAT-solving tech-
niques to perform SAT attacks on obfuscated combination logic
circuits, achieving significant success in efficient de-obfuscation
[48]. Using SAT solving process can iteratively and rapidly elimi-
nate incorrect keys, thereby avoiding inefficient brutal static key
attempts. However, current SAT attacks primarily focus on digi-
tal logic circuits [31], leaving a research gap regarding emerging
architectures such as CiM.

3 Understand the Challenges and Insights of
CiM Confidentiality

In this section, we provide a systematic analysis of CiM security
and position the widespread use of the CiM obfuscation protection
mechanism. We then show that existing CiM obfuscation methods
to protect the confidentiality of CiM weights are under serious
threat due to the adoption of static key deployment strategies. We
also provide insights of our attacks to actually break existing CiM
obfuscation defenses.

3.1 Why is CiM important in both academia and
industry?

The rapid growth of data volume in AI applications has made data
processing and transfer increasingly energy-intensive [51]. CiM has
served as an energy-efficient hardware solution, which can largely
alleviate the storage wall bottleneck in traditional von Neumann

0%

5%

10%

15%

20%

0

50

100

r1 r2 r3 r4 r5

U
SD

B
ill

io
n

Market Size in 2023
Market Size in 2032 (estimated)
Growth Rate

0.01

1

100

CiM TPU CPU

En
er

gy
Ef

fie
nc

y
(T

O
PS

/W
)

CIFAR-10 MNIST

(a) (b)

Figure 2: CiM performance and developing trend. (a) Energy
efficiency simulation of CiM, TPU (estimated from [63]),
and CPU (estimated from [30]). (b) Market size and growth
rate of the CiM market reported by five market research
reports. Source: r1(Imarcgroup), r2(MarketResearchGuru),
r3(MarketReportsWorld), r4(VerifiedMarketResearch),
r5(MarketsandMarkets).

Confidentiality

Integrity

Availability

Architecture & Computing Data & Storage

Compute -in- Memory

Attack Defense Attack Defense

Obfuscation
DisturbanceSCAReverse

Engineering Obfuscation

Fault
InjectionTrojan Detection

Prevention
Detection

Prevention

Service Denial / Access Denial / etc.

Figure 3: Systematic overview of CiM security. (Dark: CiM-
related works. Dashed Blue: relevant techniques that can be
applied to CiM in the future.)

architecture [6]. We used the neuromorphic simulator [5] to evalu-
ate the comparison of energy consumption of CiM, TPU and CPU
with the data support in [30, 63]. As shown in Figure 2(a), under
the image classification of CIFAR-10 [32] and MNIST [11], CiM can
exceed 30.38 TOPS/W of energy efficiency, which is significantly
higher than that of TPU and CPU in [30, 63].

In the industry, in-memory computing is forecasted to achieve
an annual growth rate of over 10%, with the market size expected
to exceed 50 billion by 2032 (estimated by 5 reports) as depicted
in Figure 2(b). On the product front, in 2021, Samsung launched
HBM-PIM to enhance data efficiency in AI accelerator systems [14].
In 2022, SK Hynix developed GDDR6-AiM and a Computational
Memory Solution (CMS) based on CXL [38].

3.2 Why is CiM security a critical concern?
With the growing trend of CiM development, understanding and
guaranteeing the security of CiM is crucial for safeguarding data
privacy and maintaining system stability. To the best of our knowl-
edge, there has been limited systematic analysis of the attack and
defense strategies specifically tailored for CiM.

Regarding this, we provide a novel abstraction and systematic
analysis on CiM security, as shown in Figure 3. Our systematic
review not only encompasses all attacks and defenses related to

3438

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jianfeng Wang, Huazhong Yang, Shuwen Deng∗ , and Xueqing Li∗

0%

50%

100%

[Zou, 2022]

[Chakraborty, 2020]

[Grailoo,2022]

[Zhao, 2022]

[Wang, 2023]

[Huang, 2020]

[Li, 2021]

[Zhao, 2023]

[Chen, 2023]

[Li, 2019]

[Li, 2019]

[Zou, 2020]

[Wang, 2021]

[Zou, 2023]

A
cc
ur
ac
y

Non-obfuscation Obfuscation

Figure 4: The accuracy of existing CiM obfuscation tech-
niques on the CIFAR-10 [32] image classification task. The
classification accuracy of the obfuscated CiM model drop to
10% compared to the non-obfuscated model.

CiM (dark boxes), but also incorporates potential hardware attacks
and defenses [12, 39, 60] that could be deployed on CiM architec-
tures (dashed blue boxes). From the security perspective, we use
three cornerstone security properties [33] to categorize the CiM
security: confidentiality, integrity, and availability. From the CiM
architecture perspective, computing architecture and data storage
are two crucial aspects as the name "CiM" suggests. Therefore, we
summarize and analyse attacks and defenses based on these two
dimensions.

At present, CiM confidentiality is currently the most extensively
studied dimension, with both attacks and defenses being intensively
studied on architecture and data. Works [15] have exploited reverse-
engineering to recover CiM structure and [44, 45, 58] use SCA to
threat data confidentiality. [3, 7–9, 19, 24, 25, 35–37, 55, 56, 64–68]
have proposed various of defenses with obfuscation or disturbance.
As for integrity, only a few works have discussed attack, yet we
believe related detection and prevention defense is not a new re-
search direction although it has not appeared in CiM related papers.
As for availability, we have not found any literature related to CiM
at present, but this is a direction worth exploring in the future.

3.3 Why is CiM obfuscation an effective defense
mechanism for confidentiality?

From the systematic analysis presented in Section 3.2, we observe
that CiM obfuscation has become a mainstream defense currently.
To protect the confidentiality of on-chip data, obfuscation changes
the data form from plaintext to ciphertext while enabling the sys-
tem to perform ciphertext computing with the correct keys. The
ciphertext form of weights significantly reduces comprehensibility.
Furthermore, even if the data is leaked, obfuscated data holds no
practical value without the keys.

We conduct image classification evaluations on all 14 state-of-
the-art CiM obfuscation techniques, as listed in Table 1, using the
extracted ciphertext data from their architectures. As shown in Fig-
ure 4, all 14 obfuscation techniques result in a significant reduction
in inference accuracy on the CIFAR-10 [32] image classification
dataset from 90% to 10% with VGG8 model. Therefore, obfuscated
data fundamentally renders the extracted weights useless, without
introducing significant overheads to the computing system [68].
Consequently, it has emerged as the predominant method for safe-
guarding confidentiality.

20 26 36 57 100
16 32 64 128 256

Key Size

Brutal Force Digital SAT Attack

216 232 264
2128

2256

K
ey

A
tte

m
pt

Figure 5: The attempts required for brute-force attack and
SAT attack [48] to de-obfuscate the pure combination logic
circuit. Benchmark: c1355 from ISCAS85[21].

3.4 Why does CiM obfuscation still exist
vulnerability?

We analyzed the aforementioned 14 CiM obfuscation techniques
and found that they share similar structural features. All 14 tech-
niques utilize additional circuit modules (such as MUX or XOR) to
add static keys to control the circuit behavior. They leverage the
exponentially key space to defend against key attempts. However,
these keys are not only static but also do not involve any iterative
encryption techniques.

On the other hand, we know that static keys inserted in pure
digital netlists are under the threat. For instance, the SAT-based
de-obfuscation (SAT attack) proposed in [46, 48] enables rapid ex-
amination of static keys in digital netlists. As shown in Figure 5, we
evaluate and compare between the attempts required for brute-force
and SAT attacks to de-obfuscate a combinational logic obfuscated
circuit. As the key length increases, the number of key attempts
in brute-force attacks grows exponentially. However, SAT attacks
leverage SAT solvers to rapidly prune the exponential key space and
accomplish the search of the key space in polynomial complexity.

The significance of SAT attack lies in the fact that while solving
SAT problems is typically NP-complete [13], those derived from
boolean circuits can be efficiently solved by modern SAT solvers
[29]. In other words, while defenders attempt to obfuscate boolean
circuits using exponential key spaces, attackers can solve keys
in polynomial time under the SAT attack model. Therefore, this
inspires us to explore a novel de-obfuscation attack tailored specifi-
cally for CiM obfuscation.

3.5 How to attack CiM obfuscation:
challenges and insights

CiM has unique architectural characteristics and computational
features, making the straightforward application of existing SAT
attacks to CiM obfuscation unfeasible. In this section, we analyse
and summarize two major challenges to use SAT idea on to do CiM
de-obfuscation attack, along with our insights.

Firstly, the storage characteristics of CiM architecture affect the
extraction of function netlists, thereby challenging the SAT solving
process. Traditional SAT attacks decompose circuits through scan
chains, ultimately modeling and solving for combinational logic
circuits, which do not contain storage units. In other words, the in-
formation in the netlist can represent the whole circuit functionality.
However, CiM architecture is the fusion of storage and computing,
meaning that the weights stored in crossbar also determine circuit

3439

CiMSAT: Exploiting SAT Analysis to Attack Compute-in-Memory Architecture Defenses CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

0%
20%
40%
60%
80%

100%

Digital Analog/Mixed
Signal

CiM CiM Obfuscation

0%
20%
40%
60%
80%

100%

SRAM NVM Other

CiM CiM Obfuscation

(a) (b)

Figure 6: CiM and CiM obfuscation architecture research
statistics [49]. (a) Proportion of cell devices including SRAM,
NVM, and other types of memory devices. (b) Proportion of
digital domain computing and analog/mixed signal domain
computing.

functionality, rendering simple netlist extraction meaningless [19].
Additionally, as shown in Figure 6(a), among existing CiM obfusca-
tion architectures, 60% of the work is based on non-volatile memory
(NVM) with intrinsic data storage and non-CMOS characteristics,
which further poses challenges for netlist modeling.

Our first critical observation is that even though the obfuscated
weights in the CiM obfuscation architecture hold no application
value, they can still be fitted and translated into a digital netlist form
thereby converting storage elements that SAT attacks cannot handle
into digital logic. While the circuit function is still determined by
the key, the reconstructed digital netlist can be further subjected to
SAT-based attacks without concerning storage units. Based on this
observation, we first use regression to fit the obfuscated weights,
and then reconstruct the pure obfuscated digital circuit. Therefore,
we eliminate the storage component and obtain a pure logic netlist
for further de-obfuscation.

Challenge: Storage feature cannot be directly modeled as a
netlist usable for SAT attack.
Insight: The "no-inference-value" obfuscated weights can be
used to model the CiM storage behavior with low bias.

On the other hand, the analog domain computing feature affects
the solving process of SAT solvers. Figure 6(b) demonstrates that
both CiM and CiM obfuscation architectures have digital domain
computing accounting for only about 30%, while analog/mixed-
signal computing architectures account for close to 70%. Analog
domain computing results need to be eventually quantized into
digital results, inevitably introducing quantization noise. However,
existing SAT solvers are designed only for digital circuit designs, so
the solving process involves precise clause judgements. Therefore,
the noise may cause this precise decision to stall or result in no
solution.

Based on that, our second critical observation is that while quan-
tization noise introduces biases, we can adjust the SAT solver’s
decision criteria based on the distribution of these biases. We incor-
porate the biases into the SAT-solving process, rendering the entire
attack be bias-tolerant. We found that the majority of biases are
concentrated at lower levels, thus will not bring a large overhead
to the SAT solving process in clause decision criteria. This not only
reduces design complexity but also has a negligible impact on solv-
ing time. Although this bias-tolerant SAT algorithm may lead to

SAT Solver

Oracle

𝑪𝒐𝒓𝒂𝒄𝒍𝒆(𝑰⃗, 𝑶)

Obfus.

CNF:𝑪𝒐𝒃(𝑰⃗, 𝑶,𝑲) SAT Clause

Validation

Validation

Validation

…

Query 𝑰⃗

Output 𝑶
𝑲 ∗

Attacker

RE

Market

Figure 7: Oracle-guided threat model.

imprecise solutions, our application-oriented evaluation suggests
that the overhead introduced by this approximation is acceptable.

Challenge: Analog computing feature with quantization
biases cannot be processed by SAT attack.
Insight: Adding tolerance to quantization biases can con-
tribute to attack analog CiM.

Drawing from the insights above, we present our de-obfuscation
attack strategy CiMSAT for CiM obfuscation architecture in Sec-
tion 4.

4 CiMSAT Attack framework
In this section, we will discuss the threat model and the detailed
attack methodology.

4.1 Threat Model and Overview
4.1.1 Threat Model. In our attack, as is shown in Figure 7, at-
tacker is able to obtain the obfuscated netlist of the target circuit
by reverse-engineering (RE). From the obfuscated netlist, attackers
cannot know the keys but can acquire the −→𝐼 /−→𝑂 pairs with arbi-
trary key attempts. In order to using SAT solvers for attack, the
functionality of the obfuscated netlist is represented as a Conjunc-
tive Normal Form (CNF). Attacker is also assumed to have access
to an unlocked functional circuit 𝑓𝑜𝑟𝑎𝑐𝑙𝑒 (without knowing keys)
as an oracle, which can be obtained from the market in reality
[17, 31]. This aligns with oracle-guided attack model in logic obfus-
cation [61]. The golden input (−→𝐼)-output (−→𝑂) pair can be obtained
through querying the oracle through the testing structure of CiM
[4, 16, 18, 20, 34, 40, 53, 54]. The attack use the SAT clause and SAT
solver to analyse the keys, with the constraints iteratively added
from the oracle.

The ultimate goal of the attacker is the key, which means that
they need to find at least one key vector

−→
𝐾∗ that satisfies:

𝐶𝑜𝑏 (
−→
𝐼 ,
−→
𝑂 ,
−→
𝐾∗) = 𝐶𝑜𝑟𝑎𝑐𝑙𝑒 (

−→
𝐼 ,
−→
𝑂),∀−→𝐼 ,−→𝑂 (1)

4.1.2 CiMSAT Overview. As outlined in Figure 8, our detailed de-
obfuscation attack process contains two steps, functional approxi-
mation reconstruction (Figure 8(a)) and bias-tolerant SAT (btSAT)
key recovery process (Figure 8(b)), which corresponds to the two
challenges and insights discussed in Section 3.5. In the first step,
we perform weight fitting on the crossbar hardware (Figure 8(a)(1)),
and use the approximated weights to represent the functionality
of the CiM obfuscation architecture (Figure 8(a)(2)), thereby re-
constructing a pure-digital netlist format suitable for SAT solving
(Figure 8(a)(3)). At this stage, the netlist is obfuscated since the key
is still the target secret. In the second step, we address the bias

3440

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jianfeng Wang, Huazhong Yang, Shuwen Deng∗ , and Xueqing Li∗

In
pu

t P
or

ts

Output Ports

K
ey

-B
as

ed
Lo

gi
c

Driver

(1) Obfuscated
Weight Fitting

Operation

Target Secrets

In
pu

t P
or

ts

Output Ports

K
ey

-B
as

ed
Lo

gi
c

Driver

Operation

Target Secrets

(2) Function
Transformation K

ey
-B

as
ed

Lo
gi

c

In
pu

t P
or

ts

O
ut

pu
t P

or
ts

Target Secrets

(3) Netlist & CNF
Reconstruction

Query

SAT Clause

(b) 4.3 Bias-Tolerant SAT Attack (target Challenge 2 in 3.5)

In
pu

t P
or

ts

Key

Key O
ut

pu
t P

or
ts

CNF: 𝑪𝒐𝒃 𝑰⃗, 𝑶, 𝑲
∗

Oracle: 𝑶 = 𝒇𝒐𝒓𝒂𝒄𝒍𝒆(𝑰⃗,𝑾𝒐𝒃, 𝑲
∗)

Logic Module: 𝑶 = 𝒇𝒐𝒃𝑫 (𝑰⃗, 𝑲
∗)

𝑶 = 𝒇𝒐𝒃(𝑰⃗,𝑾𝒐𝒃
) , 𝑲 ∗)

LSLR: 𝑾𝒐𝒃
) = 𝑹𝑬𝑮(𝑰⃗, 𝑶)

CNF

Validation

Validation

Validation
…

SAT Solver

Type-1: Error
elimination

Type-2: Threshold
tolerance

DIP
Solving𝑲 ∗

No more DIP

Bias tolerance
Iteration

(a) 4.2 Function Approximation Reconstruction (target Challenge 1 in 3.5)

Target Secrets

Challenge 1: storage function modeling

Challenge 2: analog feature solving

Figure 8: Overview of the CiMSAT (Dark red: target secrets for adversaries). (a) Function Approximation Reconstruction (4.2).
(b) Bias-tolerant SAT attack (4.3).

generated in the previous reconstruction process and propose two
bias tolerance methods to ultimately recover the target key vector
−→
𝐾∗ (Figure 8(b)

4.2 Function Approximation Reconstruction
This section introduces the reconstruction process from the CiM
computing paradigm to digital computing paradigm, corresponding
to Figure 8(a). The CiM obfuscation architecture employs keys and
obfuscated weights −−→𝑊𝑜𝑏 :

−→
𝑂 = 𝑓𝑜𝑟𝑎𝑐𝑙𝑒 (

−→
𝐼 ,
−−→
𝑊𝑜𝑏 ,

−→
𝐾∗) (2)

where 𝑓𝑜𝑟𝑎𝑐𝑙𝑒 denotes the oracle function, −→𝐼 ,−→𝑂 represents the
inputs and outputs, −−→𝑊𝑜𝑏 represent the obfuscated weights, and

−→
𝐾∗

refers to the key used for obfuscation. At this stage, both −−→𝑊𝑜𝑏 and
−→
𝐾∗ are target secrets to adversaries (shown in dark red). We first
fit the obfuscated weights −−→𝑊𝑜𝑏 that do not possess any inference
value but will help with the following reconstruction step.

4.2.1 Obfuscated Weight Fitting. The most important goal of this

step is to approximate a set of obfuscated weights
−−→
𝑊
′

𝑜𝑏
that are

consistent with −−→𝑊𝑜𝑏 functionality. As shown in Figure 8(a)(1), we
adopt least squares linear regression (LSLR) with −→𝐼 /−→𝑂 samples

from the scan chain to get
−−→
𝑊
′

𝑜𝑏
. We take controllable points as the

crossbar input ports and observable points as the crossbar output
ports. For analog/mixed domain CiM architecture, observable points
are registers after the ADC quantization.

To perform LSLR on CiM array, we first model the MAC opera-
tions in crossbar:

−→
𝑂 ← −−→𝑊𝑜𝑏𝑇 ·

−→
𝐼 + 𝜖 (3)

where −→𝑂 is the target binary-form output vector obtained by regis-
ters (digital CiM) or ADCs (analog CiM), −→𝐼 is an𝑚 × 1 input vector
query from input ports, and −−→𝑊𝑜𝑏 is an𝑚 × 1 vector representing
weights) of the model. 𝜖 represents quantization noise, which exists
while using ADCs for analog/mixed signal computing. We use a
left arrow "←" to indicate that this is a hardware-centric compu-
tational process. Please note that from hardware perspective, −→𝑂 is
represented with 𝑛 bits, and can be recognized as an 𝑛-dimensional
output vector.

We adopted random sample input vectors −→𝐼 (10,000 in this work)
and get the corresponding outputs −→𝑂 , which served as the train set
for the LSLR analysis. The goal of the LSLR is to find the optimal

obfuscated weight (
−−→
𝑊
′

𝑜𝑏
, in this case), that minimizes the sum of

squared errors 𝑒 between the predicted values 𝑂̂ and the output
value given by output registers 𝑂 :

𝑒 = min−−→
𝑊
′
𝑜𝑏

∥𝑂 − 𝑂̂ ∥22 = min−−→
𝑊
′
𝑜𝑏

∥𝑂 −
−−→
𝑊
′

𝑜𝑏
𝑇 · −→𝐼 ∥22 (4)

where ∥ · ∥2 denotes the Euclidean norm.

3441

CiMSAT: Exploiting SAT Analysis to Attack Compute-in-Memory Architecture Defenses CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

(a)

𝑰⃗ / 𝑶	

𝑲𝒆𝒚

𝑶𝒃𝒇𝒖𝒔𝒄𝒂𝒕𝒆𝒅
𝑫𝒂𝒕𝒂

0

1
𝑹𝒆𝒔𝒖𝒍𝒕

XOR

𝑲𝒆𝒚

𝑰⃗ / 𝑶	 𝑹𝒆𝒔𝒖𝒍𝒕

(b)
MUX O

bf
us
ca
tio
n

N
et
w
or
k

𝑰⃗ / 𝑶	 𝑹𝒆𝒔𝒖𝒍𝒕

(c)

𝑲𝒆𝒚

Figure 9: Key-related logic module summary. (a) Mux form
(light overheads) [3, 19, 55, 64, 66]. (b) XOR form (light over-
heads) [7, 24, 35–37, 65]. (c) Obfuscation network form (heavy
overheads) [56, 67, 68].

After extracting
−−→
𝑊
′

𝑜𝑏
by LSLR, as shown in the Figure 8(b), the

target secrets are reduced to only the key
−→
𝐾∗:

−→
𝑂 = 𝑓𝑜𝑏 (

−→
𝐼 ,
−−→
𝑊
′

𝑜𝑏
,
−→
𝐾∗) (5)

Although the SAT solver still cannot model the CiM paradigm in
Eq. (5) at this stage, we can transform it to a new pure-digital logic

netlist with the function brought by
−−→
𝑊
′

𝑜𝑏
, which does not contain

any storage or non-digital logic. We will detail this in the next part.

4.2.2 Function Transformation. In this sub-section, we focus on the
paradigm shifting from CiM to digital logic (Figure 8(b)(2)). Since

we use LSLR to fit
−−→
𝑊
′

𝑜𝑏
, Eq. (5) actually represents a completely pure

digital system 𝑓𝑜𝑏 , which takes digital vectors −→𝐼 and
−→
𝐾∗(target) as

input, undergoing operations modeled by Eq. (3) involving𝑊 ′

𝑜𝑏
,

and finally producing digital vector −→𝑂 as output. In other words, if
we consider the internal operations as a black box and only look at
the inputs and outputs, this system perform a purely digital to digi-
tal function. Therefore, we adopt high-level hardware description
language (HDL) to transform 𝑓𝑜𝑏 into digital logic module 𝑓 𝐷

𝑜𝑏
:

−→
𝑂 = 𝑓 𝐷

𝑜𝑏
(−→𝐼 ,
−→
𝐾∗) (6)

where 𝑓 𝐷
𝑜𝑏

embeds the operations with
−−→
𝑊
′

𝑜𝑏
, −→𝐼 and −→𝑂 are digital

input and output.
For
−→
𝐾∗ in Eq. (6), we incorporate the knowledge from RE (align

with Section 4.1) to transform key-related logic. As shown in Fig-
ure 9, we categorize the logic modules in current CiM obfuscation
architectures into three main types, and we define 𝑁 as the number
of I/O ports controlled by each key in key-related logics. Among
them, those based on MUX and XOR are more commonly adopted
(Figure 9(a-b)) with relatively low hardware overheads, and typi-
cally 𝑁 = 1. Modules based on obfuscation networks, e.g., a N-to-N
Benes network [23] , shown in Figure (9)(c), provide obfuscation
involved multiple input/output ports (𝑁 > 1), resulting in enhanced
correlation between each port despite higher overheads.

We synthesized the HDL with added key logic and evaluated
the 2-input logic gate number in a 64×64 crossbar scenario as an
example. As shown in Figure 10, designs employing obfuscation
networks exhibit significantly higher hardware overheads, while
MUX and XOR works cost significant lower hardware resources.

4.2.3 Netlist&CNFReconstruction. Finally, as shown in Figure 8(a)(3),
we perform synthesis and reconstruct the digital netlist based on Eq.

0

100000

200000

G
at
e

N
um

be
r

MUX XOR NetWork

Figure 10: Gate number (unified to 2-input gate) of the re-
constructed netlist (Condition: crossbar=64×64, Ref: same as
Figure 9).

Y

CNF
𝑪𝒐𝒃

SAT
Clause |DIP|>0?

Oracle
Equivalence

CheckingY
Add Clause

SAT
Solver 𝑲𝒆𝒚

N

(a)

SAT
Solver

CNF
𝑪𝒐𝒃

SAT
Clause |DIP|>0?

Oracle
Equivalence

Checking

Y

Add Clause

SAT
Solver 𝑲𝒆𝒚

N

(b)

SAT
Solver B=0?

CNF
𝑪𝒐𝒃

SAT
Clause |DIP|>0?

Oracle
Equivalence

Checking

Add Clause

SAT
Solver 𝑲𝒆𝒚

N

(c)

SAT
Solver

B<Threshold?

Y

N

Figure 11: SAT attack procedure. (a) SAT attack for digital
circuits. (b) Proposed type-1 btSAT for CiM. (c) Proposed type-
2 btSAT for CiM.

(6). Since the netlist is now purely digital, it can be reconstructed
into CNF formula that SAT solvers can resolve:

𝐶𝑁𝐹 : 𝐶𝑜𝑏 (
−→
𝐼 ,
−→
𝑂 ,
−→
𝐾∗) (7)

where
−→
𝐾∗ is the target secret to be solved in the next section.

Back to Figure 8(a), we present functional approximation re-
construction through three subsections, primarily addressing the
storage issue in Challenge 1 (Section 3.5). In the next section, we
show how to tackle Challenge 2 and use the reconstructed CNF to
recover the key

−→
𝐾∗.

4.3 Bias-Tolerant SAT Attack (btSAT)
In this section, we use𝐶𝑜𝑏 in CNF formula to conduct bias-tolerant
SAT attack to obtain the final key

−→
𝐾∗ (Figure 8(b)).

4.3.1 Traditional SAT Attack and Limitation. As shown in Fig-
ure 11(a), in the digital SAT attack, the 𝐶𝑜𝑏 can be transformed
into an iteratively solvable SAT clause, and SAT solver solves dis-
tinguishable input patterns (DIPs) through SAT clauses. Each dis-
covery of a DIP implies that the key space can be partitioned into
two subsets: incorrect keys classified by the current DIP and oracle,
and undecided keys. The DIP is inputted into an oracle for equiva-
lence checking, obtaining a set of golden I/O pairs as a constraint

3442

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jianfeng Wang, Huazhong Yang, Shuwen Deng∗ , and Xueqing Li∗

Our System

NeuroSim Synopsys DC Compiler SAT solver

Obfuscated
weight fitting

Function
transformation

Netlist & CNF
reconstruction

SAT modeling
& processing

Input

Output
Key

recovery

Application

Figure 12: CiMSAT platform with NeuroSim [5], Synopsys
DC compiler [50], and SAT solver [48].

clause, which are then iterated into SAT clauses. In this way, DIPs
can efficiently prune the key space by identifying and removing a
certain number of incorrect keys. When no DIP can be found by
the SAT solver, it indicates that all key vectors in the current key
space are the solution.

However, this may not work for CiM de-obfuscation. In the
equivalence checking step (shaded square in Figure 11(a)) , oracle
provides golden I/O pairs for SAT clause, in other words, the ora-
cle provides precise and accurate constraints to 𝐶𝑜𝑏 . However, in
Section 4.2, 𝐶𝑜𝑏 is an approximation reconstruction, thus there is a
potential bias between the oracle and 𝐶𝑜𝑏 . Therefore, the precise
constraint conditions from oracle may lead to unsolvability of 𝐶𝑜𝑏 .

4.3.2 Our Solution. We propose two bias-tolerant SAT (btSAT) key
recovery methodologies, as is shown in Figure 8(b-c). We define a
variable 𝐵 as the output bias between the oracle and reconstructed
𝐶𝑜𝑏 under the same input −→𝐼 . The following is a detailed introduc-
tion to two techniques.

Type-1 btSAT. To avoid 𝐵 ≠ 0 in the oracle equivalence check-
ing, we add a judgement to select DIPs. As shown in Figure 11(b),
we check the 𝐵 produced by the solved DIP. If 𝐵 = 0, this DIP does
not cause conflicts with the CNF constraints; if 𝐵 ≠ 0, the DIP is
discarded and SAT solver calculates a new DIP. The advantage of
type-1 btSAT is that the final solved key (

−→
𝐾∗) does not introduce

any bias. The drawback is the increased time cost of SAT solving,
as many DIPs need to be discarded, even if they have the ability
to prune incorrect keys. However, this time overhead can be ac-
ceptable, mainly because we find that for the solver proposed in
work [48], the total time of CNF construction, SAT clause construc-
tion, and equivalence checking incurred a greater time proportion
than the DIP solving time. Therefore, the time overhead introduced
by type-1 btSAT is tolerable.

Type-2 btSAT. Type-2 approach is to add bias threshold during
equivalence checking, allowing the SAT solver to approximately
solve some clauses rather than precisely recognizing them. As
shown in Figure 11(c), we set a threshold for judgement and adjust
the criteria of the SAT solver correspondingly. If 𝐵 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ,
we add this clause served as an approximate constraint condition.
Consequently, the SAT solver will not fail when 𝐵 ≠ 0, but instead
implements an approximate solution within a certain threshold.
Approximating MAC operations (Section 4.2) provides benefits to
perform approximate equivalence checks for the majority of DIPs
while ensuring the threshold is small. The advantage of this method
is that it reduces the attack time compared to type-1 btSAT. The
drawback is that there may be an extra bias on the left side of Eq.
(1) caused by the approximate constraint.

Algorithm 1 btSAT De-Obfuscation Algorithm
/* This algorithm is applicable when the oracle and the obfus-
cated netlist perform biased outputs. We present two types of
btSAT and user can select either one. */
Input: 𝐶𝑜𝑏 , oracle, Threshold, {Type-1,Type-2} = {1,0} or {0,1}
Output:

−→
𝐾∗

1: 𝑖 := 1
2: 𝐹𝑖 := 𝐶𝑜𝑏 (

−→
𝐼 ,
−−−→
𝐾𝑒𝑦1,

−→
𝑂1) ∧𝐶𝑜𝑏 (

−→
𝐼 ,
−−−→
𝐾𝑒𝑦2,

−→
𝑂2)

3: while 𝑠𝑎𝑡 [𝐹𝑖 ∧ (
−→
𝑂1 ≠

−→
𝑂2)] do

4:
−−−→
𝐷𝐼𝑃𝑖 := 𝑠𝑎𝑡_𝑠𝑜𝑙𝑣𝑒𝑟−−→

𝐷𝐼𝑃
[𝐹𝑖 ∧ (

−→
𝑂1 ≠

−→
𝑂2)]

5:
−−−−→
𝑂𝐷𝐼𝑃
𝑖

:= 𝑜𝑟𝑎𝑐𝑙𝑒 (−−−→𝐷𝐼𝑃𝑖)

6: 𝐵 := | |
−−−−→
𝑂𝐷𝐼𝑃
𝑖
− 𝑓 𝐷

𝑜𝑏
(−−→𝐷𝐼𝑃) | | ⊲ Get the bias.

7: if (Type-1 & !𝐵 == 0) then
8: continue ⊲ Type-1: Skip and find another DIP.
9: end if
10: 𝐹𝑖+1 := 𝐹𝑖 ∧𝐶𝑜𝑏 (

−−−→
𝐷𝐼𝑃𝑖 ,

−−−−−→
𝐾𝑒𝑦1,2,

−−−−→
𝑂𝐷𝐼𝑃
𝑖
)

11: if (Type-2 & 𝐵 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) then

12: 𝐹𝑇ℎ
𝑖

:=
∨
𝑑 𝐶𝑜𝑏

(
−−−→
𝐷𝐼𝑃𝑖 ,

−−−−−→
𝐾𝑒𝑦1,2,

−−−−−−−−−−−−−−−−−→
𝑂𝐷𝐼𝑃
𝑖
+𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑑

)
13: 𝐹𝑖+1 := 𝐹𝑖+1 ∧ 𝐹𝑇ℎ𝑖 ⊲ Type-2: Add approximate CNF
14: end if
15: 𝑖 := 𝑖 + 1
16: end while
17: return

−→
𝐾∗ := 𝑠𝑎𝑡_𝑠𝑜𝑙𝑣𝑒𝑟𝐾𝑒𝑦1 (𝐹𝑖)

However, this bias can also be acceptable, and our insight is as
follows: We believe that CiM de-obfuscation differs from traditional
digital circuit de-obfuscation. For digital logic, de-obfuscation must
be precise, because attackers need to accurately recover the func-
tionality, such as an ALU or multiplier module. In contrast, CiM
is widely applied in energy-efficient AI applications at the edge,
where the fault tolerance of deep learning shows advantageous.
In other words, even if bias causes minor imprecision, it merely
results in partial performance degradation rather than rendering
the application entirely non-functional. Thus, within the realm of
CiM applications, we view bias presence as an acceptable reality.

Algorithm. In Algorithm 1, we introduce the pseudo code im-
plementation of type-1 or type-2 btSAT. The algorithm takes an
obfuscated netlist as input, and our threat model assumes the ora-
cle can provide the golden I/O pairs. We also require a threshold
as a criterion for the type-2 btSAT, which can be pre-defined by
checking the distribution of 𝐵. .

From line 2 to line 5, the algorithm first uses a SAT solver to find
the current DIP under the condition of the SAT clause 𝐹𝑖 , consistent
with Subramanyan et al. [48]. −−−−−→𝐾𝑒𝑦1,2 are variables instead of certain
specific key vectors. In line 6, we get the bias 𝐵 between the oracle
and the obfuscated netlist under the input of −−−→𝐷𝐼𝑃𝑖 . From line 7 to
line 9, we deploy the type-1 btSAT. If there is a bias 𝐵! = 0, we
judge that this DIP is not suitable for iterative inclusion in the
SAT clause. If there is no bias, the DIP can be included in the SAT
clause through line 10. From line 11 to line 14, we deploy the type-2
btSAT. When the bias is less than the given threshold, we include

3443

CiMSAT: Exploiting SAT Analysis to Attack Compute-in-Memory Architecture Defenses CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

a set of CNF expressions with biased outputs, denoted as 𝐹𝑇ℎ
𝑖

, in
the existing SAT clause. Since line 12 is a "or" expression, with an
appropriate threshold selection, the probability of unsolvability
of the SAT clause can be reduced to an acceptable degree. Finally,
when all DIPs are found, it returns the recovered key vector

−→
𝐾∗.

5 Evaluation
In this section, we evaluate the effectiveness of CiMSAT attack
framework proposed in and perform experiment on different pa-
rameter settings. We further show that in widely adopted neural-
network applications such as MNIST [11] and CIFAR-10 [32] image
classifications, CiMSAT can effectively recover the obfuscated keys
and reconstruct averagely 97% and 95% accuracy compared with
original applications.

5.1 Experiment Settings
CiMSAT Platform. As shown in Figure 12, we have developed a
system using Python to implement obfuscated weight fitting (Sec-
tion 4.2.1), function transformation ((Section 4.2.2), netlist & CNF
Reconstruction (Section 4.2.3), and SAT modeling (Section 4.3). Our
system comprises three interfaces interacting with: NeuroSim simu-
lator [5], Synopsys DC Compiler [50], and a SAT solver [41]. Specifi-
cally, the NeuroSim simulator provides application-level simulation
for in-memory computing hardware, the DC compiler translates
high-level language into netlists, and the SAT solver is utilized for
btSAT analysis. These three simulation tools, combined with our
system, form an analysis platform for de-obfuscation.

Hardware Setup. The function reconstruction using DC Com-
piler are executed on a 24-core Intel Xeon Gold 5318Y CPU running
at 2.1GHz. Other simulations are executed on a 18-core Intel Core
i9-10980XE CPU running at 3.00GHz and NVIDIA GeForce RTX
3090.

Existing CiM obfuscation defenses. Our focus is primarily on
the architectures that obfuscate the computing process, i.e., perform-
ing on-chip computing using obfuscated ciphertext. As is shown in
Table 1, We thoroughly searched for obfuscation techniques that
can be applied to CiM for performing ciphertext computing and
evaluated them. In the table we summarized the existing defenses,
including the obfuscation type, cell device, computing modes, ap-
plication datasets, and evaluation details considered in each work.

5.2 CiM De-Obfuscation Evaluation and
Analysis

In this section, we first present the de-obfuscation attack results for
the state-of-the-art obfuscation defenses in Table 1 under a typical
parameter vector defined in the following Eq. (8). Subsequently, we
generalize the different elements of the parameter vector and fur-
ther implement CiMSAT to evaluate CiM security. To facilitate read-
ers in accessing the conclusions, we label all the sub-conclusions
starting from ❶.

Parameter Vector. For ease of discussion, we define a parameter
vector:

−−−−−−−−−→
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = (𝑆, 𝑁 ,𝑊 ,𝑀, 𝐵) (8)

Table 1: Existing CiM Obfuscation Defenses

Defense Obfuscation
Type

Cell
Device

Computing
Mode

Application
Dataset

Evaluation
Aspects

Zou et al. [66] MUX RRAM Analog CIFAR-10 Accuracy Drop
Overheads

Chakraborty et al. [3] MUX / Digital
MNIST

CIFAR-10
SVHN

Accuracy Drop

Grailoo et al. [19] MUX / Digital MNIST
SVHN

Accuracy Drop
Overheads

Zhao et al. [64] MUX RRAM Analog
CIFAR-10
MNIST

ImageNet

Accuracy Drop
Overheads
Speedup

Wang et al. [55] MUX NVM Analog CIFAR-10 Accuracy Drop
Overheads

Huang et al. [24] XOR SRAM Analog ImageNet
Accuracy Drop
Overheads

HW Performance

Li et al. [36] XOR RRAM Analog CIFAR-10
Accuracy Drop
Overheads

HW Performance

Zhao et al. [65] XOR FeFET Analog ImageNet
Accuracy Drop

Device
Overheads

Chen et al. [7, 35, 37] XOR SRAM/
eDRAM Analog MNIST

CIFAR-10

Accuracy Drop
Device

HW Performance
Overheads

Zou et al. [67] Network RRAM Analog/
Digital CIFAR-10 Accuracy Drop

Overheads

Wang et al. [56] Network RRAM Analog MNIST Accuracy Drop
Overheads

Zou et al. [68] Network RRAM Analog/
Digital CIFAR-10 Accuracy Drop

Overheads

where 𝑆 (scale) refers to the size of crossbar. 𝑁 (Number of key-
controlled ports) is defined in Section 4.2.2 to describe the key-
controlled I/O port number.𝑊 (width) represents data bit width,𝑀
(mode) indicates digital or analog/mixed signal computing mode,
and 𝐵 (bias) denotes reconstruction bias.

We applied parameter vectors to 14 defense techniques, resulting
in 176 distinct defense vectors. Among them, we merged [7, 35, 37,
65] as one defense as they exhibited similar circuit characteristics.
Our subsequent evaluation showed that 158 vectors (90%) could be
de-obfuscated within 1000 seconds, and 172 vectors (98%) could be
de-obfuscated within 1 day.

5.2.1 Effectiveness of CiMSAT Attack @ (16, 1, 8, Digital, 0). We
show the attack effectiveness of CiMSAT under a typical parameter
setting of 16 × 16 crossbar, row/column-wised key ports (𝑁 = 1),
and the 8-bit data width [49]. We first analyze the digital CiM
obfuscation, hence the bias is 0. Our de-obfuscation results are
summarized in Table 2. Consistent with Table 1, we categorize
the obfuscation types into three major classes: MUX, XOR, and
Network. For each defense, we outline the specific locations where
they deploy key ports. We provide the gate-level netlist size after
functional transformation, uniformly represented in terms of two-
input logic gates, along with the iteration count for SAT-based key
solving, equivalence checks results, and the final de-obfuscation
time. We can see that CiMSAT are able to de-obfuscated all of them
within 12 iterations and 781 seconds.

From Table 2, we summarize two conclusions. ❶ Firstly, regard-
ing the technique of obfuscation, the de-obfuscation time is approxi-
mately positively correlated with the gate number, i.e. reconstructed
netlist size. The gate number of the Network type is significantly
higher than MUX and XOR, leading to the higher de-obfuscation

3444

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jianfeng Wang, Huazhong Yang, Shuwen Deng∗ , and Xueqing Li∗

Table 2: CiMSAT executing results on CiM obfuscation defenses with . Parameter vector = (16,1,8,Digital,0)

Obfuscation Type MUX XOR Network
Obfuscation Technique [3] [66] [19] [64] [55] [24] [36] [7, 35, 37, 65] [67] [56] [68]
Obfuscation Position Column Column Column Row Row Row Row Row Row Column R & C

Gate Number∗ 462 435 628 695 815 400 673 654 2560 6499 10531
Iteration 1 1 1 3 11 5 7 4 12 1 8

Checking Equivalence Match Match Match Match Match Match Match Match Match Match Match
De-obfuscation Attack Time (s) 0.429 0.438 0.626 1.527 2.848 0.891 1.848 0.896 71.654 5.932 781.108
∗Unified as two-input logic gates.

[C
ha

kr
ab

or
ty

,
20

20
]

[Z
ou

, 2
02

2]

[G
ra

ilo
o,

20
22

]

[Z
ha

o,
 2

02
2]

[W
an

g,
 2

02
3]

[H
ua

ng
, 2

02
0]

[L
i,

20
21

]

[Z
ha

o,
 2

02
3]

[Z
ou

, 2
02

0]

[W
an

g,
 2

02
1]

[Z
ou

, 2
02

3]

G
at

e
N

um
be

r

S = 4 S = 16
S = 64 S = 256

Significant

Overheads

Security↑
Overheads↑

Security↓
Overheads↓

(a) (b)

10-1
1

101
102
103
104

106

105

1

101
102
103
104

106

105

4 16 64 256

D
e-

ob
fu

sc
at

io
n

Ti
m

e
(s

)

S

[Chakraborty, 2020] [Zou, 2022]
[Grailoo,2022] [Zhao, 2022]
[Wang, 2023] [Huang, 2020]
[Li, 2021] [Zhao, 2023]
[Zou, 2020] [Wang, 2021]
[Zou, 2023]

Figure 13: CiMSAT executing results with different S. Pa-
rameter vector = (S ∈ {4,16,64,256}, 1, 8, Digital, 0). (a) De-
obfuscation time. (b) Gate Number.

time. This reveals a design trade-off: the security of CiM obfusca-
tion comes with hardware costs. ❷ Secondly, the iteration count
for column obfuscation (key ports deployed in column dimension)
is significantly lower than other types. This is because, for CiM
test structures, columns are a common observation point for scan
chains and are much easier to attack.

5.2.2 Scale Analysis @ (S, 1, 8, 𝐷𝑖𝑔𝑖𝑡𝑎𝑙, 0). This section evaluates
the existing CiM obfuscation defenses on different array scale 𝑆 .
We select four 𝑆 values from 4 to 256, covering mainstream designs
[49]. We apply the existing obfuscation approaches to different
array sizes. As the 𝑆 increases, the scale of the reconstructed netlist
will also increase, and lead to more time cost of the de-obfuscation
process. Figure 13(a) illustrates the de-obfuscation time of CiMSAT
under different 𝑆 conditions, while Figure 13(b) shows the gate-level
netlist scale of existing works after functional transformation. ❸

We observe a trade-off between de-obfuscation time and hardware
cost depicted figures. For MUX/XOR types, the de-obfuscation time
is significantly lower compared to the Network type, and corre-
spondingly, the gate number of netlist is also lower. The Network
type offers higher security demonstrated from de-obfuscated time,
but entails more significant hardware overheads.

Furthermore, we can roughly predict the security boundaries of
the three obfuscation types under static key insertion strategy, pro-
viding guidance to the CiM designers. For MUX/XOR types, even
if the array scale is extended to the existing maximum 𝑆 of 1024,

0.1

1

N = 1 N = 2 N = 4

D
e-

ob
fu

sc
at

io
n

Ti
m

e
(s

)

S = 4

[Chakraborty, 2020] [Zou, 2022]
[Grailoo,2022] [Zhao, 2022]
[Wang, 2023] [Huang, 2020]
[Li, 2021] [Zhao, 2023]

N = 1 N = 2 N = 4 N = 8

D
e-

ob
fu

sc
at

io
n

Ti
m

e
(s

)

S = 16

[Chakraborty, 2020] [Zou, 2022]
[Grailoo,2022] [Zhao, 2022]
[Wang, 2023] [Huang, 2020]
[Li, 2021] [Zhao, 2023]

N = 1 N = 2 N = 4 N = 8

D
e-

ob
fu

sc
at

io
n

Ti
m

e
(s

)

S = 64

[Chakraborty, 2020] [Zou, 2022]
[Grailoo,2022] [Zhao, 2022]
[Wang, 2023] [Huang, 2020]
[Li, 2021] [Zhao, 2023]

N = 1 N = 2 N = 4 N = 8

D
e-

ob
fu

sc
at

io
n

Ti
m

e
(s

)

S = 256

[Chakraborty, 2020] [Zou, 2022]
[Grailoo,2022] [Zhao, 2022]
[Wang, 2023] [Huang, 2020]
[Li, 2021] [Zhao, 2023]

1

101

102

103

104

105

1

101
102
103

104

106

105

0.1

1

101

102

103
Row obfuscation
Column obfuscation

Row obfuscation
Column obfuscation

Row obfuscation
Column obfuscation

Row obfuscation
Column obfuscation

Figure 14: CiMSAT executing results with different S and
N. Parameter vector = (S ∈ {4, 16, 64, 256} , N ∈ {1, 2, 4, 8}, 8,
Digital, 0).

the predicted CiMSAT de-obfuscation time will not exceed one day.
❹ Therefore, the critical conclusion is that low-cost obfuscation,
highly regarded by hardware designers, is actually vulnerable from
a security perspective. As for the Network type, if defenders are
willing to bear the high hardware cost introduced by key insertion,
resistance capability exceeding one day can be achieved in arrays
with parallelism scales above 256. However, according to the latest
CiM survey [49], the mainstream parallelism of existing MAC calcu-
lations still concentrates on 4 to 64. Therefore, static key insertions
within mainstream parallelism ranging from 4 to 64 are under the
security threats of keys being recovered.

5.2.3 Key-based Module Analysis @ (S, N, 8, Digital, 0). The rela-
tively low hardware overhead of MUX/XOR types results in a much
lower de-obfuscation time compared to Network types. In this sec-
tion, we increase the key-controlled number of rows/columns and
illustrate the MUX/XOR types obfuscation security under high key-
related hardware overhead. We set the number of key-controlled

3445

CiMSAT: Exploiting SAT Analysis to Attack Compute-in-Memory Architecture Defenses CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

0

0.5

1

-2 -1 0 1 2

Pr
ob

ab
ili

ty

B

S = 64, ADC = 4b
MPC = 1
MPC = 2
MPC = 3

0

0.5

1

-2 -1 0 1 2

Pr
ob

ab
ili

ty

B

S = 16, ADC = 2b
MPC = 1
MPC = 2
MPC = 3

0

0.5

1

-2 -1 0 1 2

Pr
ob

ab
ili

ty

B

S = 256, ADC = 6b
MPC = 1
MPC = 2
MPC = 3

0

0.5

1

-2 -1 0 1 2

Pr
ob

ab
ili

ty

B

S = 64, ADC = 5b
MPC = 1
MPC = 2
MPC = 3

0

0.5

1

-2 -1 0 1 2

Pr
ob

ab
ili

ty

B

S = 4, ADC = 1b
MPC = 1
MPC = 2
MPC = 3

0

0.5

1

-2 -1 0 1 2

Pr
ob

ab
ili

ty

B

S = 16, ADC = 3b
MPC = 1
MPC = 2
MPC = 3

0

0.5

1

-2 -1 0 1 2

Pr
ob

ab
ili

ty

B

S = 256, ADC = 7b
MPC = 1
MPC = 2
MPC = 3

0

0.5

1

-2 -1 0 1 2

Pr
ob

ab
ili

ty
B

S = 64, ADC = 6b
MPC = 1
MPC = 2
MPC = 3

0

0.5

1

-2 -1 0 1 2

Pr
ob

ab
ili

ty

B

S = 4, ADC = 2b
MPC = 1
MPC = 2
MPC = 3

0

0.5

1

-2 -1 0 1 2

Pr
ob

ab
ili

ty

B

S = 16, ADC = 4b
MPC = 1
MPC = 2
MPC = 3

0

0.5

1

-2 -1 0 1 2

Pr
ob

ab
ili

ty

B

S = 256, ADC = 8b
MPC = 1
MPC = 2
MPC = 3

Threshold

<1
(1,2)
>2

Coverage

52.3%
99.1%
100%

Summary Table

Figure 15: Bias evaluation with 10,000 samples. The summary table indicates that over 99% of the values of B are less than 2.
Parameter = (P ∈ {4, 16, 64, 256}, 1, 8, Analog, B)

row/columns from 1 to 8, consistent to the typical crossbar com-
puting scale.

As shown in Figure 14, we evaluated the de-obfuscation time of
eight types of MUX/XOR-based CiM obfuscation techniques under
conditions where 𝑆 is 4, 16, 64, and 256, and 𝑁 ranges from 1 to 8
(with 𝑁 reaching a maximum of 4 when 𝑆 is 4). In each sub-figure,
the de-obfuscation time increases with the increase of 𝑁 , as the SAT
solver needs to evaluate larger reconstructed netlist sizes. Compar-
ing the four subplots, it can be observed that defense techniques
with obfuscation positions in columns (light blue dashed lines)
require less time to be attacked compared to those with obfusca-
tion positions in rows (dark blue solid lines). In summary, 119 of
120 (99%) defense test points are de-obfuscated within 106 seconds
(approximately 12 days), with 117 test points (98%) de-obfuscated
within one day.❺ The conclusion here is that increasing key-related
hardware resources can indeed increase the de-obfuscation time,
but SAT solvers are still able to recover the key in polynomial time.
Additionally, security of column obfuscation remains lower than
row obfuscation security, especially under conditions of large-scale
arrays.

5.2.4 Data Bit Width Analysis @ (S, 1,W, Digital, 0). For hardware
design of data accelerators, data width is an important parameter
that influences the performance and overheads. We conducted anal-
ysis of the data width (𝑊) under 𝑆 equal to 16 and 64. As shown in
Figure 16, the de-obfuscation time grows approximately linear with
the growth of𝑊 . ❻ Therefore, the conclusion here is that the length
of the data width does not fundamentally affect the security of CiM
obfuscation, yet longer data widths can increase the de-obfuscation
time.

8 16 32

D
e-
ob
fu
sc
at
io
n
Ti
m
e
(s
)

W

S = 64

[Chakraborty, 2020] [Zou, 2022]
[Grailoo,2022] [Zhao, 2022]
[Wang, 2023] [Huang, 2020]
[Li, 2021] [Zhao, 2023]
[Zou, 2020] [Wang, 2021]
[Zou, 2023]

8 16 32

D
e-
ob
fu
sc
at
io
n
Ti
m
e
(s
)

W

S = 16

[Chakraborty, 2020] [Zou, 2022]
[Grailoo,2022] [Zhao, 2022]
[Wang, 2023] [Huang, 2020]
[Li, 2021] [Zhao, 2023]
[Zou, 2020] [Wang, 2021]
[Zou, 2023]

1

102

104

106

1
101
102
103

10-1

Figure 16: CiMSAT executing results with different S and W.
Parameter vector = (S ∈ {16, 64} , 1, W ∈ {8, 16, 32}, Digital, 0).

0.1

1

10

100

1000

[C
ha

kr
ab

or
ty

, 2
02

0]
[Z

ou
, 2

02
2]

[G
ra

ilo
o,

20
22

]
[Z

ha
o,

 2
02

2]
[W

an
g,

 2
02

3]
[H

ua
ng

, 2
02

0]
[L

i,
20

21
]

[Z
ha

o,
 2

02
3]

[Z
ou

, 2
02

0]
[W

an
g,

 2
02

1]
[Z

ou
, 2

02
3]

D
e-

ob
fu

sc
at

io
n

Ti
m

e
(s

)

Type-2 btSAT
Key Solving
DIP Solving
Model Configuration

0.1

1

10

100

1000

[C
ha

kr
ab

or
ty

, 2
02

0]

[Z
ou

, 2
02

2]

[G
ra

ilo
o,

20
22

]

[Z
ha

o,
 2

02
2]

[W
an

g,
 2

02
3]

[H
ua

ng
, 2

02
0]

[L
i,

20
21

]

[Z
ha

o,
 2

02
3]

[Z
ou

, 2
02

0]

[W
an

g,
 2

02
1]

[Z
ou

, 2
02

3]

D
e-

ob
fu

sc
at

io
n

Ti
m

e
(s

)

Type-1 btSAT
Key Solving
DIP Solving
Model Configuration

Figure 17: The time discrepancy between two types of btSAT.
Parameter vector = (16, 1, 8, Analog, B≤2).

3446

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jianfeng Wang, Huazhong Yang, Shuwen Deng∗ , and Xueqing Li∗

0%

50%

100%

10 20 30 40 50 AvgA
cc
ur
ac
y
R
ec
ov
er
y

Epoch

MNIST Case Study

w/ Obfuscation @ Digital device w/o Obfuscation @ Digital Device Type-1 btSAT @ Digital Device
Type-2 btSAT @ Digital Device w/ Obfuscation @ Ideal device w/o Obfuscation @ Ideal Device
Type-1 btSAT @ Ideal Device Type-2 btSAT @ Ideal Device w/ Obfuscation @ Real device
w/o Obfuscation @ Real Device Type-1 btSAT @ Real Device Type-2 btSAT @ Real Device

0%

50%

100%

10 20 30 40 50 AvgA
cc
ur
ac
y
R
ec
ov
er
y

Epoch

CIFAR-10 Case Study

w/ Obfuscation @ RRAM device w/o Obfuscation @ RRAM Device Type-1 btSAT @ RRAM Device
Type-2 btSAT @ RRAM Device w/ Obfuscation @ SRAM device w/o Obfuscation @ SRAM Device
Type-1 btSAT @ SRAM Device Type-2 btSAT @ SRAM Device

Figure 18: Accuracy recovery with keys from CiMSAT .

0%

50%

100%

Real Device
Deobfuscation

Ideal Device
Deobfuscation

A
cc
ur
ac
y

R
ec
ov
er
y

MNIST Case Study

w/ obfuscation w/o obfuscation
{0, 0.6, 0.4, 0} {0, 0.5, 0.5, 0}
{0, 0.4, 0.6, 0} {0.1, 0.7, 0.2, 0}
{0.07, 0.45, 0.45, 0.03} Avg

0%

50%

100%

RRAM Device
Deobfuscation

SRAM Device
Deobfuscation

A
cc
ur
ac
y

R
ec
ov
er
y

CIFAR-10 Case Study

w/ obfuscation w/o obfuscation
{0, 0.6, 0.4, 0} {0, 0.5, 0.5, 0}
{0, 0.4, 0.6, 0} {0.1, 0.7, 0.2, 0}
{0.07, 0.45, 0.45, 0.03} Avg

Figure 19: Accuracy recovery with different bias distribution.
Legend represents {p(B=-1),p(B=0),p(B=1),p(B=2)}.

5.3 De-obfuscation on Analog CiM
5.3.1 Bias Evaluation @ (S, 1, 8, Analog, B). In this section, we
evaluate the reconstruction bias 𝐵. We conduct random sampling
on the reconstructed circuit and the original CiM circuit to obtain
the distribution of 𝐵. As shown in Figure 15, for each sub-figure, we
calculate the probability distribution of 𝐵 under certain settings of
𝑆 and ADC quantized bits. Firstly, for the digital CiM, 𝐵 is entirely
zero, indicating that MAC calculations in the digital domain do
not introduce bias, consistent with our theoretical expectations.
Secondly, we analyze 𝐵 for four 𝑆 values and observe that over
90% of 𝐵 are concentrated near zero (0 or 1). Thirdly, we evaluate
the number of data bits per memory cell of the crossbar (MPC)
and observe that in most cases, MPC is not the main deterministic
factor in CiM designs 𝐵. ❼ The conclusion drawn here is that
the reconstruction of MAC exhibits low-error characteristics (no
error for digital CiM), which is reasonable since CiM is essentially a
hardware accelerator for MAC operations, and its operation pattern
naturally approaches the linear calculation characteristics of real
MAC expressions.

5.3.2 btSAT Time Evaluation @ (16, 1, 8, Analog, B≤2). This sec-
tion evaluates the difference of de-obfuscation time between two
types of btSAT attacks. We implement both types of btSAT on the
existing CiM defenses with parameters = (16, 1, 8, Analog, B≤2). As
shown in Figure 17, firstly, modeling and constructing the circuit
scripts incurs a significant amount of time overhead (proportional

to the reconstructed netlist size). Therefore, there is an approximate
double time cost relationship difference in the DIP solving process,
but the overall time difference depends on the proportion of DIP
solving time. The larger the proportion, the more significant the
time overhead of type-1 btSAT. Secondly, for different CiM obfusca-
tion techniques, the additional time overhead generated by type-1
varies. The main reason is that the number of iteration rounds for
DIP solving differs for each defense. The more the iteration rounds,
the longer the additional time overhead generated by type-1 btSAT.
❽ The conclusion is that the time overhead of type-1 btSAT de-
pends on the specific design of the DIP iterative solving process,
and the time overhead of constructing the model cannot be ignored.
For type-2 btSAT, because the bias of 𝐵 is concentrated around 0,
the threshold can be sufficiently small (≤ 2) as well as covering
most DIPs. However, while DIP solving time is saved, it introduces
solving bias. We evaluate this issue in Section 5.4.

5.4 Application Evaluation
We conducted CiMSAT evaluations with two case studies on typical
image classification tasksMNIST [11] and CIFAR-10 [32] adopted by
CiM obfuscation defense works, using CiMSAT Platform as shown
in Figure 12. We uploaded models trained for 10 to 50 epochs onto
CiM hardware and loaded the keys solved by CiMSAT into the key
ports to evaluate the inference accuracy recovery.

Our evaluation results are presented in Figure 18. First, a two-
layer perceptron for MNIST image classification is employed. We
found that for three different device models (digital, ideal, real),
type-1 btSAT can recover the classification accuracy by 100% com-
pared with original CiM circuits, while type-2 btSAT can recover
an average of 100%, 93%, and 89% of the classification accuracy,
respectively. We then employ a VGG-8 model for CIFAR-10 classifi-
cation. For two different device models (RRAM and SRAM), type-1
btSAT can recover the original classification accuracy by 100% com-
pared with original CiM circuits, while type-2 btSAT can recover an
average of 88% and 93% of the classification accuracy, respectively.

To further estimate type-2 btSAT in analog CiM de-obfuscation,
in Figure 19, we extracted the probability distributions of typical
𝐵 biases based on Figure 15 and evaluated the accuracy recovery.
We denote the bias distribution as {𝑝 (𝐵 = −1), 𝑝 (𝐵 = 0), 𝑝 (𝐵 =

1), 𝑝 (𝐵 = 2)}. For MNIST application, the average accuracy recov-
ery for real devices and ideal devices is 87% and 96% compared with
original CiM circuits, respectively. For CIFAR-10 application, the
average accuracy recovery for RRAM devices and SRAM devices is
91% and 92% compared with original CiM circuits, respectively.

❾ To conclude, in the typical application scenario of CiM obfus-
cation, our attack can achieve de-obfuscation across various devices
and computing modes due to key-related logic and deployment al-
gorithm that determine the CiM system security rather than device
types. Additionally, since our de-obfuscation capability basically
comes from the approximate modeling of CiM architecture and
data, we believe CiMSAT can be extended to other applications.

5.5 End-to-End Demonstration and Analysis
In Section 4, we have conducted the following end-to-end analysis:
target hardware and oracle definition, approximate netlist recon-
struction, and btSAT analysis (the core algorithm). To make the

3447

CiMSAT: Exploiting SAT Analysis to Attack Compute-in-Memory Architecture Defenses CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

CiMSAT demonstration more comprehensive, we further evalu-
ated its performance in a real-chip environment. We employed a
mixed-signal compute-in-memory chip published in JSSC’23 [62],
with specifications of (32, 1, 8, Analog, 2). We tested representa-
tive clock frequencies for DIP queries, with results showing that
de-obfuscation remains effective, achieving over 95% accuracy. The
maximum delay observed was 40ns per query, which constitutes
only a negligible portion (<0.0001%) of the de-obfuscation time, as
illustrated in Fig. 17.

The minimal time overhead observed is not an unexpected out-
come, as the primary bottleneck in the hardware de-obfuscation
process lies in the complexity of solving SAT-related algorithms.
In the entire end-to-end demonstration process, the time associ-
ated with "queries" tied closely to the real hardware is minimal and
deterministic. An attacker needs only to control the input-output
interfaces of the logic module to acquire input-output pairs within
a certain number of clock cycles, which can then be fed back into
the SAT solver. Meanwhile, the SAT solver must iterate and solve
a large number of SAT clauses, making it the primary contributor
to the time overhead in the end-to-end demonstration. Therefore,
we recommend that defenders focus on anti-SAT algorithm design
during netlist development.

6 Discussion
6.1 Result Interpretation and Analysis
This work reveals that under the same obfuscation defenses, array
parallelism is the primary parameter influencing the solving time
and complexity. We investigated the trend in parallelism growth
among different CiM architectures. Notably, only current-mode CiM
architectures exhibit a clear trend of increasing parallelism. A sig-
nificant milestone in this trend is the 512-parallelism design, which
was published in 2023 [10]. However, despite this progression, ex-
tremely high-parallelism designs remain uncommon in mainstream
applications. This is largely due to the substantial hardware over-
head associated with such designs, which poses practical challenges
that limit their widespread adoption.

To further understand the implications of high parallelism on
security, we simulated the first three defense mechanisms listed in
Table 1 using a parallelism level of 4096. The results revealed an
average de-obfuscation time of approximately 3000 seconds. This
outcome is consistent with the expectations derived from polyno-
mial fitting models, suggesting that the de-obfuscation complexity
scales predictably with increased parallelism, albeit at the cost of
significantly longer computation times.

Therefore, while increasing the array size may offer some defen-
sive advantages, it does not fundamentally enhance the netlist’s
resistance to SAT attacks. Moreover, as SAT-related algorithms
continue to evolve, merely enlarging the array size is not an effec-
tive defense strategy. We advocate for and anticipate innovation at
the CiM obfuscation algorithm level as a more robust approach to
enhancing security.

6.2 Further Defense Strategy
We have demonstrated the effectiveness of CiMSAT and found that
the static key insertion alone is insufficient to achieve exponential
key complexity. Considering the defenses, there are mainly two
directions. First is to break the foundation of the oracle-guided
attack model, for example, by setting up secure scan chains for
CiM. However, modifying the test structure implies utilizing larger
logic circuit overhead and additional test pins [2], which cannot be
automated using EDA tools. The second direction is to develop col-
laborative hardware and algorithm defenses under existing attack
models. This requires defenders to combine the CiM design and
anti-SAT algorithms. However, reducing the additional hardware
overheads introduced by the algorithm while maintaining energy
efficiency within the CiM array architecture remains to be a chal-
lenge. No related approaches have been proposed to the best of our
knowledge.

6.3 Adaptability and Scalability Beyond VMM
Operations

Currently, existing CiM architectures primarily focus on acceler-
ating Vector-Matrix Multiplication (VMM), which provides prior
knowledge for regression analysis. In the future, CiM may accel-
erate other computational paradigms, requiring updates to the
algorithms for data extraction as discussed in Section 4.2. Our crit-
ical observation is that, compared to combination logic circuits,
CiM typically serves as an accelerator in computing architecture,
supported by underlying mathematical principles. If researchers
can utilize these mathematical principles as prior knowledge, de-
veloping reverse fits may not be as challenging as SAT problems
encountered in combination circuits. Existing work has already pro-
posed corresponding algorithms [28, 42] that are fully compatible
with our analysis framework.

7 Acknowledgement
This work is supported in part by NSFC (U21B2030, 92264204),
LFET, and BNRist.

8 Conclusion
This work proposes CiMSAT attack that can break the security of
existing CiM obfuscation defense. CiMSAT comprises functional ap-
proximation reconstruction and bias-tolerant SAT attack (btSAT),
firstly focusing on modeling and processing the unique storage
and mixed-signal computing feature of CiM architectures. We set
up 176 defense vectors derived from all 14 existing CiM obfus-
cation techniques and evaluated security, 90% of which were de-
obfuscated within 1,000 seconds and 98% within a day. We applied
the de-obfuscated model to today’s mainstream CiM confounding
applications, recovering an average accuracy of 97% and 95% on
MNIST and CIFAT-10 classifications. We also mark nine detailed
sub-conclusion in the evaluation section to provide insights for the
security of CiM and even similar new hardware architectures.

3448

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jianfeng Wang, Huazhong Yang, Shuwen Deng∗ , and Xueqing Li∗

References
[1] Kazi Asifuzzaman, Narasinga Rao Miniskar, Aaron R Young, Frank Liu, and Jef-

frey S Vetter. 2023. A survey on processing-in-memory techniques: Advances and
challenges. Memories-Materials, Devices, Circuits and Systems 4 (2023), 100022.

[2] Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, and Avesta Sasan.
2021. From cryptography to logic locking: A survey on the architecture evolution
of secure scan chains. IEEE Access 9 (2021), 73133–73151.

[3] Abhishek Chakraborty, Ankit Mondai, and Ankur Srivastava. 2020. Hardware-
assisted intellectual property protection of deep learning models. In 2020 57th
ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[4] Arjun Chaudhuri, Chunsheng Liu, Xiaoxin Fan, and Krishnendu Chakrabarty.
2021. C-testing and efficient fault localization for AI accelerators. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 41, 7 (2021),
2348–2361.

[5] P.-Y. Chen, X. Peng, and S. Yu. 2017. NeuroSim+: An integrated device-to-
algorithm framework for benchmarking synaptic devices and array architectures.
In IEEE International Electron Devices Meeting (IEDM). San Francisco, USA.

[6] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks. ACM SIGARCH
computer architecture news 44, 3 (2016), 367–379.

[7] Zhuojun Chen, Ming Wu, Yifeng Zhou, Renlong Li, Jinzhe Tan, and Ding Ding.
2023. PUF-CIM: SRAM-Based Compute-In-Memory With Zero Bit-Error-Rate
Physical Unclonable Function for Lightweight Secure Edge Computing. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems (2023).

[8] S. K. Cherupally, J. Meng, A. S. Rakin, and et al. 2022. Improving the accuracy
and robustness of RRAM-based in-memory computing against RRAM hardware
noise and adversarial attacks. Semiconductor Science and Technology 37, 3 (2022),
034001.

[9] Sai Kiran Cherupally, Adnan Siraj Rakin, Shihui Yin, Mingoo Seok, Deliang Fan,
and Jae-sun Seo. 2021. Leveraging Noise and Aggressive Quantization of In-
Memory Computing for Robust DNN Hardware Against Adversarial Input and
Weight Attacks. In 2021 58th ACM/IEEE Design Automation Conference (DAC).
559–564. https://doi.org/10.1109/DAC18074.2021.9586233

[10] Peter Deaville, Bonan Zhang, and Naveen Verma. 2023. A 256-kb Fully
Row/Column-parallel 22nm MRAM In-Memory-Computing Macro with Dif-
ferential Readout for Robust Parallelization and Scale-up. In ESSCIRC 2023-IEEE
49th European Solid State Circuits Conference (ESSCIRC). IEEE, IEEE.

[11] L. Deng. 2012. The mnist database of handwritten digit images for machine
learning research [best of the web]. IEEE Signal Processing Magazine 29, 6 (2012),
141–142.

[12] C. Dong, Y. Xu, X. Liu, and et al. 2020. Hardware trojans in chips: A survey for
detection and prevention. Sensors 20, 18 (2020), 5165.

[13] Niklas Eén and Niklas Sörensson. 2003. An extensible SAT-solver. In International
conference on theory and applications of satisfiability testing. Springer, 502–518.

[14] Samsung Electronics. 2023. HBM-PIM. https://semiconductor.samsung.
com/news-events/tech-blog/hbm-pim-cutting-edge-memory-technology-to-
accelerate-next-generation-ai/.

[15] Sina Sayyah Ensan, Karthikeyan Nagarajan, Mohammad Nasim Imtiaz Khan, and
Swaroop Ghosh. 2021. SCARE: Side channel attack on in-memory computing
for reverse engineering. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 29, 12 (2021), 2040–2051.

[16] Moritz Fieback, Mottaqiallah Taouil, and Said Hamdioui. 2022. Structured test
development approach for computation-in-memory architectures. In 2022 IEEE
International Test Conference in Asia (ITC-Asia). IEEE, 61–66.

[17] Jugal Gandhi, Diksha Shekhawat, M Santosh, and Jai Gopal Pandey. 2023. Logic
locking for IP security: A comprehensive analysis on challenges, techniques, and
trends. Computers & Security (2023), 103196.

[18] Anteneh Gebregiorgis and Mehdi B Tahoori. 2019. Testing of neuromorphic
circuits: Structural vs functional. In 2019 IEEE International Test Conference (ITC).
IEEE, 1–10.

[19] Mahdieh Grailoo, Uljana Reinsalu, Mairo Leier, and Tooraj Nikoubin. 2022.
Hardware-assisted neural network ip protection using non-malicious backdoor
and selective weight obfuscation. In 2022 IEEE 15th Dallas Circuit and System
Conference (DCAS). IEEE, 1–6.

[20] Said Hamdioui, Moritz Fieback, Surya Nagarajan, and Mottaqiallah Taouil. 2019.
Testing computation-in-memory architectures based on emerging memories. In
2019 IEEE International Test Conference (ITC). IEEE, 1–10.

[21] Mark C. Hansen et al. 1999. Unveiling the ISCAS-85 Benchmarks: A Case Study
in Reverse Engineering. IEEE Design & Test of Computers 16, 3 (1999), 72–80.

[22] Weizhe Hua, Zhiru Zhang, and G Edward Suh. 2018. Reverse engineering convo-
lutional neural networks through side-channel information leaks. In Proceedings
of the 55th Annual Design Automation Conference. 1–6.

[23] L. Huang and J. Walrand. 2013. A Benes packet network. In 2013 Proceedings
IEEE INFOCOM. IEEE, 1204–1212.

[24] Shanshi Huang, Hongwu Jiang, Xiaochen Peng, Wantong Li, and Shimeng Yu.
2020. XOR-CIM: Compute-in-memory SRAM architecture with embedded XOR
encryption. In Proceedings of the 39th International Conference on Computer-Aided
Design. 1–6.

[25] S. Huang, H. Jiang, and S. Yu. 2021. Mitigating adversarial attack for compute-
in-memory accelerator utilizing on-chip finetune. In 2021 IEEE 10th Non-Volatile
Memory Systems and Applications Symposium (NVMSA). IEEE, 1–6.

[26] Shih-Hsu Huang, Wei-Che Cheng, and Jin-Fu Li. 2023. Hardware Trojans of
Computing-In-Memories: Issues and Methods. In 2023 IEEE International Sympo-
sium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT).
1–6. https://doi.org/10.1109/DFT59622.2023.10313529

[27] Chuan-Jia Jhang, Cheng-Xin Xue, Je-Min Hung, Fu-Chun Chang, and Meng-Fan
Chang. 2021. Challenges and trends of SRAM-based computing-in-memory for
AI edge devices. IEEE Transactions on Circuits and Systems I: Regular Papers 68, 5
(2021), 1773–1786.

[28] Shui Jiang, Seetal Potluri, and Tsung-Yi Ho. 2023. Scalable Scan-Chain-Based
Extraction of Neural Network Models. In 2023 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 1–6.

[29] Yier Jin and Gang Qu. 2021. Hardware Security (1st ed.). China Industry and
Information Technology Publishing and Media Group.

[30] N. P. Jouppi, C. Young, N. Patil, and et al. 2017. In-datacenter performance
analysis of a tensor processing unit. In Proceedings of the 44th annual international
symposium on computer architecture. 1–12.

[31] Hadi Mardani Kamali, Kimia Zamiri Azar, Farimah Farahmandi, and Mark Tehra-
nipoor. 2022. Advances in logic locking: Past, present, and prospects. Cryptology
ePrint Archive (2022).

[32] A. Krizhevsky et al. 2009. Learning multiple layers of features from tiny images.
Technical Report. Technical Report.

[33] R. Lee. 2013. Threat-Based Design. In Security Basics for Computer Architects.
Springer, Cham. https://doi.org/10.1007/978-3-031-01742-1_1

[34] Jin-Fu Li, Tsai-Ling Tsai, Chun-Lung Hsu, and Chi-Tien Sun. 2020. Testing of
configurable 8T SRAMs for in-memory computing. In 2020 IEEE 29th Asian Test
Symposium (ATS). IEEE, 1–5.

[35] Wen Li et al. 2019. P3M: a PIM-based neural network model protection scheme
for deep learning accelerator. In Proceedings of the 24th Asia and South Pacific
Design Automation Conference.

[36] Wantong Li, Shanshi Huang, Xiaoyu Sun, Hongwu Jiang, and Shimeng Yu. 2021.
Secure-RRAM: A 40nm 16kb compute-in-memory macro with reconfigurability,
sparsity control, and embedded security. In 2021 IEEE Custom Integrated Circuits
Conference (CICC). IEEE, 1–2.

[37] W. Li, Y. Wang, H. Li, and X. Li. 2019. Leveraging Memory PUFs and PIM-based
encryption to secure edge deep learning systems. In 2019 IEEE 37th VLSI Test
Symposium (VTS). IEEE, 1–6.

[38] Euicheol Lim. 2022. PIM and Various Computational Memory Solu-
tions. http://prism.sejong.ac.kr/dossa-4/dossa_paper/PIM_and_Various_
Computational_Memory_Solutions-Euicheol_Lim_0402.pdf

[39] S. Mittal, H. Gupta, and S. Srivastava. 2021. A survey on hardware security of
DNNmodels and accelerators. Journal of Systems Architecture 117 (2021), 102163.

[40] Sarath Mohanachandran Nair, Christopher Münch, and Mehdi B Tahoori. 2020.
Defect characterization and test generation for spintronic-based compute-in-
memory. In 2020 IEEE European Test Symposium (ETS). IEEE, 1–6.

[41] Lucas Nestor. 2020. sat_attack. https://github.com/lnestor/sat_attack.
[42] Seetal Potluri and Aydin Aysu. 2021. Stealing neural network models through

the scan chain: A new threat for ml hardware. In 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD). IEEE, 1–8.

[43] C. Qian, M. Zhang, Y. Nie, and et al. 2023. A Survey of bit-flip attacks on deep
neural network and corresponding defense methods. Electronics 12, 4 (2023), 853.

[44] James Read, Wantong Li, and Shimeng Yu. 2022. A Method for Reverse Engi-
neering Neural Network Parameters from Compute-in-Memory Accelerators.
In 2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). 302–307.
https://doi.org/10.1109/ISVLSI54635.2022.00066

[45] Brojogopal Sapui and Mehdi B. Tahoori. 2024. Power Side-Channel Analysis
and Mitigation for Neural Network Accelerators based on Memristive Crossbars.
In 2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC).
612–617. https://doi.org/10.1109/ASP-DAC58780.2024.10473828

[46] Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao, David Z Pan, and Yier Jin.
2017. AppSAT: Approximately deobfuscating integrated circuits. In 2017 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST). IEEE,
95–100.

[47] Felix Staudigl, Hazem Al Indari, Daniel Schön, Hsin-Yu Chen, Dominik Sisejkovic,
Jan Moritz Joseph, Vikas Rana, Stephan Menzel, Amelie Hagelauer, and Rainer
Leupers. 2024. It’s Getting Hot in Here: Hardware Security Implications of
Thermal Crosstalk on ReRAMs. IEEE Transactions on Reliability (2024), 1–15.
https://doi.org/10.1109/TR.2024.3371589

[48] Pramod Subramanyan, Sayak Ray, and SharadMalik. 2015. Evaluating the security
of logic encryption algorithms. In 2015 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST). IEEE, 137–143.

[49] Wenyu Sun, Jinshan Yue, Yifan He, Zongle Huang, Jingyu Wang, Wenbin Jia,
Yaolei Li, Luchang Lei, Hongyang Jia, and Yongpan Liu. 2023. A Survey of
Computing-in-Memory Processor: From Circuit to Application. IEEE Open Jour-
nal of the Solid-State Circuits Society (2023).

[50] Synopsys. 2022. DC Compiler Version T-2022.03-SP2 for linux64. May 25, 2022.

3449

https://doi.org/10.1109/DAC18074.2021.9586233
https://semiconductor.samsung.com/news-events/tech-blog/hbm-pim-cutting-edge-memory-technology-to-accelerate-next-generation-ai/
https://semiconductor.samsung.com/news-events/tech-blog/hbm-pim-cutting-edge-memory-technology-to-accelerate-next-generation-ai/
https://semiconductor.samsung.com/news-events/tech-blog/hbm-pim-cutting-edge-memory-technology-to-accelerate-next-generation-ai/
https://doi.org/10.1109/DFT59622.2023.10313529
https://doi.org/10.1007/978-3-031-01742-1_1
http://prism.sejong.ac.kr/dossa-4/dossa_paper/PIM_and_Various_Computational_Memory_Solutions-Euicheol_Lim_0402.pdf
http://prism.sejong.ac.kr/dossa-4/dossa_paper/PIM_and_Various_Computational_Memory_Solutions-Euicheol_Lim_0402.pdf
https://github.com/lnestor/sat_attack
https://doi.org/10.1109/ISVLSI54635.2022.00066
https://doi.org/10.1109/ASP-DAC58780.2024.10473828
https://doi.org/10.1109/TR.2024.3371589

CiMSAT: Exploiting SAT Analysis to Attack Compute-in-Memory Architecture Defenses CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[51] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017. Efficient
processing of deep neural networks: A tutorial and survey. Proc. IEEE 105, 12
(2017), 2295–2329.

[52] S. Tripathi, S. Choudhary, and P. K. Misra. 2023. An 8T PA attack resilient
NVSRAM for in-memory-computing applications. IEEE Transactions on Circuits
and Systems I: Regular Papers (2023).

[53] Tsai-Ling Tsai, Jin-Fu Li, Chun-Lung Hsu, and Chi-Tien Sun. 2019. Testing of in-
memory-computing 8T SRAMs. In 2019 IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). IEEE, 1–4.

[54] Tsai-Ling Tsai, Jin-Fu Li, Chun-Lung Hsu, and Chi-Tien Sun. 2021. Testing of
in-memory-computing memories with 8 T SRAMs. Microelectronics Reliability
123 (2021), 114215.

[55] Jianfeng Wang, Zhonghao Chen, Yiming Chen, Yixin Xu, Tianyi Wang, Yao Yu,
Vijaykrishnan Narayanan, Sumitha George, Huazhong Yang, and Xueqing Li.
2023. WeightLock: A mixed-grained weight encryption approach using local
decrypting units for ciphertext computing in DNN accelerators. In 2023 IEEE 5th
International Conference on Artificial Intelligence Circuits and Systems (AICAS).
IEEE, 1–5.

[56] Yuhang Wang, Song Jin, and Tao Li. 2021. A low cost weight obfuscation scheme
for security enhancement of ReRAM based neural network accelerators. In Pro-
ceedings of the 26th Asia and South Pacific Design Automation Conference. 499–504.

[57] Ziyu Wang, Fan-hsuan Meng, Yongmo Park, Jason K Eshraghian, and Wei D Lu.
2023. Side-channel attack analysis on in-memory computing architectures. IEEE
Transactions on Emerging Topics in Computing (2023).

[58] Z. Wang, Y. Wu, Y. Park, and et al. 2023. PowerGAN: A Machine Learning
Approach for Power Side-Channel Attack on Compute-in-Memory Accelerators.
Advanced Intelligent Systems 5, 12 (2023), 2300313.

[59] Wikipedia. 2024. Boolean satisfiability problem. https://en.wikipedia.org/wiki/
Boolean_satisfiability_problem

[60] Q. Xu, M. T. Arafin, and G. Qu. 2021. Security of neural networks from hardware
perspective: A survey and beyond. In Proceedings of the 26th Asia and South
Pacific Design Automation Conference. 449–454.

[61] M. Yasin, A. Sengupta, M. T. Nabeel, and et al. 2017. Provably-secure logic locking:
From theory to practice. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. 1601–1618.

[62] Guodong Yin, Yiming Chen, Mufeng Zhou, Wenjun Tang, Mingyen Lee, Zekun
Yang, Tianyu Liao, Xirui Du, Vijaykrishnan Narayanan, Huazhong Yang, et al.
2023. Cramming More Weight Data Onto Compute-in-Memory Macros for High
Task-Level Energy Efficiency Using Custom ROM With 3984-kb/mmΘ{2} Density
in 65-nm CMOS. IEEE Journal of Solid-State Circuits (2023).

[63] Shimeng Yu, Hongwu Jiang, Shanshi Huang, Xiaochen Peng, and Anni Lu. 2021.
Compute-in-memory chips for deep learning: Recent trends and prospects. IEEE
circuits and systems magazine 21, 3 (2021), 31–56.

[64] Lei Zhao, Youtao Zhang, and Jun Yang. 2022. SRA: a secure ReRAM-based DNN
accelerator. In Proceedings of the 59th ACM/IEEE Design Automation Conference.
355–360.

[65] Zijian Zhao, Yixin Xu, James Read, Po-Kai Hsu, Yixin Qin, Tzu-Jung Huang,
Suhwan Lim, Kijoon Kim, Kwangsoo Kim, Wanki Kim, et al. 2023. In-Situ En-
crypted NAND FeFET Array for Secure Storage and Compute-in-Memory. In
2023 International Electron Devices Meeting (IEDM). IEEE, 1–4.

[66] Minhui Zou, Junlong Zhou, Xiaotong Cui, Wei Wang, and Shahar Kvatinsky.
2022. Enhancing security of memristor computing system through secure weight
mapping. In 2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).
IEEE, 182–187.

[67] Minhui Zou, Zhenhua Zhu, Yi Cai, Junlong Zhou, ChengliangWang, and YuWang.
2020. Security enhancement for rram computing system through obfuscating
crossbar row connections. In 2020 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 466–471.

[68] Minhui Zou, Zhenhua Zhu, Tzofnat Greenberg-Toledo, Orian Leitersdorf, Jiang
Li, Junlong Zhou, Yu Wang, Nan Du, and Shahar Kvatinsky. 2023. TDPP: Two-
Dimensional Permutation-Based Protection ofMemristive Deep Neural Networks.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(2023).

3450

https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 CiM Architecture
	2.2 CiM Security: Attack and Defense
	2.3 SAT Problem and SAT Attack

	3 Understand the Challenges and Insights of CiM Confidentiality
	3.1 Why is CiM important in both academia and industry?
	3.2 Why is CiM security a critical concern?
	3.3 Why is CiM obfuscation an effective defense mechanism for confidentiality?
	3.4 Why does CiM obfuscation still exist vulnerability?
	3.5 How to attack CiM obfuscation: challenges and insights

	4 CiMSAT Attack framework
	4.1 Threat Model and Overview
	4.2 Function Approximation Reconstruction
	4.3 Bias-Tolerant SAT Attack (btSAT)

	5 Evaluation
	5.1 Experiment Settings
	5.2 CiM De-Obfuscation Evaluation and Analysis
	5.3 De-obfuscation on Analog CiM
	5.4 Application Evaluation
	5.5 End-to-End Demonstration and Analysis

	6 Discussion
	6.1 Result Interpretation and Analysis
	6.2 Further Defense Strategy
	6.3 Adaptability and Scalability Beyond VMM Operations

	7 Acknowledgement
	8 Conclusion
	References

