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Abstract—Hardware data prefetchers are designed to fetch memory
in advance to reduce cache misses and mitigate memory bottlenecks. By
analyzing historical memory access patterns, these prefetchers predict
and prefetch likely data targets. Major commercial CPU vendors, e.g.,
Intel, Arm, and AMD, incorporate various prefetchers in their products
to optimize memory latency. While these prefetchers can significantly
enhance performance, they can also introduce security concerns by
accessing unintended data.

In this paper, we reveal new features of prefetchers in recent Intel Xeon
processors, termed the page prefetcher. This prefetcher is indexed by the
instruction pointer (IP) and is responsible for pre-loading memory and
its Translation Lookaside Buffer (TLB) across pages. To investigate its
implications, we propose several attacks using our page prefetcher attack
(PPA) primitives. We demonstrate that PPA can be leveraged to expose
kernel information to user space and SGX enclave to untrusted zone,
such as control flow details. Furthermore, when combined with transient
attacks, PPA can extend information leakage. Our findings uncover a
significant vulnerability in the page prefetcher and highlight the broad
applicability of PPA in various attack scenarios.

Index Terms—hardware security, prefetcher, side-channel attacks.

I. INTRODUCTION

Within the domain of CPU microarchitectures, the prefetcher has
emerged as a critical component for enhancing the performance of
modern processors [9], [16]. Prefetchers predict and load data into
the cache before it is actually requested by the CPU, thereby reducing
latency and improving overall system throughput [2], [12], [18].
Hardware prefetchers, in particular, have been shown to significantly
boost computational efficiency by anticipating memory access pat-
terns and preloading data accordingly [1], [14], [26]. Especially for
maintaining high performance in data-intensive applications.

However, recent research has uncovered several vulnerabilities
associated with hardware prefetchers, highlighting that these compo-
nents are not immune to security threats [4]–[6], [11], [28], [29], [32].
These studies have demonstrated that prefetcher-related weaknesses
can be exploited to launch sophisticated side-channel attacks, such as
Augury [32] that can compromise speculative load hardening (SLH)
proposed by Chandler [3]. Such findings underscore the importance
of addressing security concerns in the design and implementation of
prefetchers to prevent potential exploits.

In this work, we propose PPA, a novel attack targeting a security-
unexplored hardware prefetcher designed to perform the prefetching
of memory pages. The page prefetcher predicts future page accesses,
issues the page-walk process ahead of time, and prefetches the target
page info as well as cache line into the Translation Lookaside Buffer
(TLB) and L1 Cache.

We first demonstrate that this page prefetcher is a physically and
functionally different prefetcher compared with hardware prefetchers
explored by all existing prefetcher and related attacks [4]–[6], [11],
[28], [29], [32].1 We go further and show that: ❶ The entries of
page prefetcher are isolated with traditional IP-stride cache-line-based
prefetchers; ❷ A wider indexing bits is required by page prefetcher

1The closest work is FetchBench [28], which a listed phenomenon that
shares some common features with our cross-page prefetching but does not
specify it and explore anything further than that. Documented prefetchers
in Table I, only TLB and Next-Page prefetcher could cross page, but the
former would not access data, while the latter has limited prefetch distance.

compared with traditional IP-stride prefetcher, which also provides
lower-noise covert channel and side-channel attack environment.

With that, our PPA attack is able to achieve the following exploits:
❶ PPA first does a systematic and extensive reverse engineering of
the page prefetcher to disclose all its parameters, including indexing
policy, confidence, stride, and activation policy. ❷ PPA then uses
and trains page prefetcher across privilege boundary, which can
transmit secrets between the normal world and privilege world, e.g.,
kernel to the user, untrusted zone, and SGX enclave. ❸ PPA is also
demonstrated to be able to perform Spectre attacks [19] by triggering
page prefetcher during speculation. Last, We reported the results to
the affected vendors.

Our key contributions are as follows:

• We conduct an in-depth reverse-engineering of the page
prefetcher on the Intel Xeon Processor.

• As far as our consideration, we are the first to demonstrate that
this page prefetcher is physically and functionally distinct from
hardware prefetchers explored by all existing related attacks.

• We propose PPA, a novel attack targeting a security-unexplored
hardware prefetcher designed to perform page prefetching.

• Using PPA, we achieve a prefetcher-based Spectre attack, build a
Kernel-User covert channel that has higher bandwidth compared
to previous works, and attack Intel SGX to leak secrets from its
secret-dependent branch.

We will open-source our code via: https://page-prefetcher-attack-
code-to-be-provided.

II. BACKGROUND

A. Hardware Prefetcher

Prefetching is a widely adopted technique in modern processors
used to mitigate the latency gap between the CPU and the memory
subsystem. Prefetchers can hide the long DRAM latency by predict-
ing and preloading data from slower memory into the high-speed
cache before the data is requested by the CPU. Intel processors
provide both software prefetching instruction interfaces and dedicated
prefetching hardware components. Software prefetching requires the
use of programmer knowledge or compiler information by inserting
PREFETCH instructions into the program with an explicit memory ad-
dress, while hardware prefetchers automatically predict the memory
access address by learning the run-time memory access patterns.
The speculation that occurs in the hardware prefetcher is different
from branch predictor speculation. If the prediction of prefetching is
wrong, the useless memory accesses may waste bandwidth or pollute
the cache. However, the data will not be used by the processor and
will not affect the normal execution of the program.

Intel has integrated at least five in-core hardware data prefetchers
and a TLB prefetcher into their processor designs [9], [10], with the
features of these prefetchers outlined in Table I. The Data Cache
Unit (DCU) prefetcher, also known as the next-line prefetcher [30],
automatically prefetches the subsequent cache line when a cache
miss occurs. The IP-Stride prefetcher tracks load instructions that
exhibit regular strides from the same IP. The Data Prefetch Logic
(DPL), or adjacent prefetcher, treats data as 128-byte aligned blocks.



TABLE I: Documented Intel In-Core Hardware Prefetchers.

Intel Prefetcher Location Pattern

Data Cache Unit L1-D Next cache line (CL)
Instruction-Pointer Stride L1-D Stride pattern in CL granularity

TLB Prefetcher L1-D Linear address TLB prefetch
Next-Page Prefetcher L1-D Sequential Accesses to CL
Data Prefetch Logic L2 128-bytes-aligned pair CL

Streamer L2 CL forward/backward

TLB
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Fig. 1: Virtual address to physical address translation.

When a cache miss occurs in one of the two cache lines within this
block, the DPL triggers a prefetch for the adjacent cache line. The
TLB prefetcher could cross page boundaries to start translations for
TLB misses without data access. The Next-Page Prefetcher (NPP)
predicts page-boundary crossings and prefetches only the next page
early, although it can also perform cross-page prefetching, it cannot
learn strides farther than the next page therefore different and weak
from this page prefetcher. The Streamer prefetcher tracks sequential
positive and negative offset streams, prefetching the subsequent or
previous cache lines accordingly. Notably, prior research [25] has
shown that the Streamer prefetcher retains its state even after a context
switch. It operates at the L2 cache level, indexed by the physical
memory address, and dynamically adjusts the number of cache
lines prefetched based on system conditions such as bandwidth and
streaming direction. However, these three hardware prefetchers lack
the flexibility of the Instruction Pointer (IP)-based stride prefetcher,
also known as the IP-stride prefetcher, which offers more adaptable
prefetching behavior.

B. Virtual Memory, Page Tables, and the TLB

Most modern desktop and server systems provide each workload
with the illusion of a large, continuous memory address space through
the use of virtual memory. Physically, each process memory may be
divided into multiple non-contiguous physical page frames. The op-
erating system is responsible for maintaining the mappings from the
virtual addresses provided by each process to the physical addresses
in dynamic random-access memory (DRAM). These mappings are
stored in a page table, with a typical granularity of 4096 bytes.

Translation. The CPU’s memory management unit (MMU) keeps
a cache of recently used mappings from the operating system’s page
table in a commonly set-associative cache known as the translation
look-aside buffer (TLB). The translation process is shown in Figure 1.
More concretely, when a virtual address needs to be translated into
a physical address, the TLB is the first place to look. If there is a hit
in the TLB, the physical address is returned and memory access can
resume. If a TLB miss occurs, in x86, the MMU will look up the
address mapping in the page table to see if a mapping exists, which
is referred to as a page walk. If one exists, it is written back to the
TLB, allowing a TLB hit for the subsequent translation. However,
the page table lookup may fail for any of three reasons: 1) an invalid
virtual address, 2) a permission issue, and 3) an unmapped physical
page.
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(a) Overview of the IP-stride prefetcher operation.
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(b) Overview of the page prefetcher operation.

Fig. 2: Comparing between IP-stride and page prefetcher.

For the first two problems, the MMU or OS will deny access if
the application attempts to access an invalid address. In terms of the
physical page, the OS will create a new mapping between the virtual
page and the physical page or load the existing map from the DRAM.

C. Timing Side-Channel Attacks

Whenever the time taken for the processor to perform certain
operations is dependent on secret values, timing side-channels can
exist [34], [35]. Instruction-based timing side-channels [22] rely on
the correlation between the secret and the number of CPU cycles
needed to execute an instruction segment. Cache-based timing side-
channels [21], [23], [27] exploit the latency gap between the cache
and memory subsystems. When the secret value is related to the
memory access behavior of the system, attackers have the potential
to extract the secret by observing timing differences.

III. PPA MOTIVATION

PPA exploits the page prefetcher introduced from the Intel 3rd

generation Xeon processors. The page prefetcher is an extension of
the IP-stride prefetcher and its main goal is to predict future page
access, pre-issue the page-walk, and finally prefetch the target page’s
translation into the TLB. This can reduce the page access latency in
the case of a correct prediction. Hence, the page accesses exhibit three
levels of access latency (we use the rdtsc to compute the latency):
(1) an TLB hit (L1 cache hit) (less than 100 cycles in our setup and
experiments), (2) TLB miss (LLC miss) (350+ cycles), and finally
(3) Page fault (8000+ cycles). The TLB hits of an untouched page
occur in cases where the page prefetcher has a correct prediction and
is enabled. Figure 2 (a) and Figure 2 (b) show an overview of
the IP-stride prefetcher and the page prefetcher alongside the cache
and TLB hierarchy. This timing variation is tightly coupled with the
memory activities of the executing program that enables easy status
monitoring of the prefetcher.

In this work, we make three key observations from the page
prefetcher behavior that enables us to build side-channel and covert-
channel attacks. First, we observe that the well-trained entry in
the page prefetcher will be reused in different domains (e.g.,
cross hyperthreading, and cross kernel). In other words, if process
p1 trains the prefetcher using a load operation with a specific IP
ip0 and another load instruction ip1 in another privilege domain
could trigger this trained entry if some specific bits of ip1 match
with the ip0. Second, the page prefetcher can load the untouched
page’s translation into TLB. We find that the page prefetcher will
automatically launch the page walk if the prefetched page is missed in
the TLB. Third, we observe that the page prefetcher can be triggered



during speculative execution. We demonstrate that if process 1 trains
the branch predictor and the page prefetcher, the page prefetcher
can prefetch data in the misprediction path without boundary or
permission check. In Section V and Section VI, we provide the details
of our observations.

IV. THREAT MODEL

In this work, we consider a threat model where the victim process
contains confidential information that the attacker aims to infer
without direct access authorization. The attacker has the capability
to run arbitrary code on the same machine and same logical core
as the victim. This means the attacker can execute code with user-
level privileges but does not have permission to access or modify
privileged areas directly. The attacker can deploy processes that
generate specific memory access patterns to train the prefetcher and
observe the effects on shared hardware resources. This capability
is crucial for manipulating the state of the prefetcher to extract
information from the victim process. The key aspects of our threat
model are described as follows:

a) Gadget Code Existence: We assume the existence of gadget
code within the victim’s process that can be exploited. Gadget code
refers to small, useful pieces of code that can be leveraged by an
attacker to perform unintended actions.

b) Co-residency: The attack process must reside on the same
physical machine as the victim process. Co-residency allows the
attacker to exploit shared hardware resources, such as the CPU cache
and prefetcher, to infer the victim’s confidential information.

V. CHARACTERIZING PAGE PREFETCHER ON INTEL

In this section, we provide a comprehensive characterization study
of the page prefetcher. We investigate the effects of the cross-page
prefetching policy in the page prefetcher, demonstrating that the page
prefetcher is a separate prefetcher alongside the IP-stride prefetcher,
which can trace page-grained memory access patterns.

A. Page-Grained Prefetcher

AfterImage [6] demonstrates that the Intel Core processor does not
support cross-page prefetching when the target prefetched page is
missed in the TLB. To explore if the novel Xeon processors support
cross-page prefetching, we designed a novel microbenchmark. The
microbenchmark is shown in Listing 1.

1 void prime(int range , int range_2 , int stride , int page) {
2 uint8_t *ptr = (uint8_t *)mmap(NULL , 4096 * 4096, ...);
3 for (int i = 0; i < range; i++) {
4 MEM(ptr + 1 * i * 4096 + 0 * 64);
5 flushAll(ptr + 1 * i * 4096, 0, 64); // flush pages
6 }
7 // train the novel prefetcher
8 for(int i = 0; i < range_2; i++)
9 MEM(ptr + stride * i * 4096);

10 // test whether the prefetcher is effective
11 int index = page * 4096;
12 time(ptr[index]);
13 }

Listing 1: Microbenchmark pseudo-code for detecting the cross-page
prefetcher’s effectiveness.

In the initial phase of our experiment, we allocate a memory pool
consisting of 256 pages. To ensure each virtual page corresponds
uniquely to a physical page, thereby mitigating the risk of page recla-
mation, we programmatically write a distinct value to the first byte of
every page. To evaluate the prefetcher’s accuracy and efficiency, we
subsequently flush TLB and caches. This guarantees that subsequent
accesses to these pages request the data from DRAM.
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Fig. 3: Activation of the page prefetcher on IP2 following training
with IP1.

We experiment to examine whether the L1 cache is loaded along-
side the TLB entry in the page prefetcher. After flushing both the
TLB and caches, we measure the page access time and subsequently
train the prefetcher. We then evaluate the access time for a new page
on the N+stride path. The page access time is 420± cycles after
flushing, and it decreases to 60± cycles following the training of
the prefetcher. This reduction in access time shows that the L1 cache
entry for the new page is prefetched concurrently with the TLB entry.

Following this setup, we employ a series of controlled memory
access patterns to scrutinize the effectiveness of the system’s prefetch-
ing mechanisms. By varying the stride and the number of training
iterations across the allocated pages, this experiment aims to evaluate
the prefetcher’s effectiveness in preemptively loading the necessary
data into the cache. We found that a page prefetcher is introduced
in Intel 3rd and 4th (Sapphire Rapids) Xeon processors, which can
prefetch page-level information.

We use the same loop function shown in Listing 1 but different
values for the train. We noted that the page prefetcher can prefetch up
to 4 pages as the stride under page-granularity prefetching conditions,
and it can achieve prefetching with both positive and negative strides.

B. Indexing Policy of Page Prefetcher

Previous works [6] demonstrated that the traditional IP-stride
prefetcher is indexed by the lower 8 bits of the instruction pointer.
As the page prefetcher is also indexed by the IP, to determine if the
indexing policy is the same as the IP-stride prefetcher, we use the
same microbenchmark as described in AfterImage [6] to recover the
indexing policy. Figure 3 demonstrates the test result. We note that
IP2 initiates prefetching when it aligns with at least the lower 10 bits
of IP1. This finding shows that the page prefetcher in the 3rd Xeon
processor is indexed by the lower 10 bits but not the lower 8 bits
used by the IP-stride prefetcher.

C. Confidence and Stride Details

With the use of the microbenchmarking, we note that the con-
fidence has two bits and the threshold is 2, which is the same as
the IP-stride prefetcher [6]. More concretely, we train the prefetcher
using page-sized data offset in this work, a stride of 2 means that the
stride recorded in the page prefetcher has a length of 2× 4096 bytes
or 2 pages in total.

The microbenchmark used to reveal the confidence and stride
update policy is designed as Listing 2. The microbenchmark employs
stride 1 to train the prefetcher for tr 1 iterations, and then stride 2
is used to train the prefetcher for tr 2 iterations. Finally, the results
from the benchmark allow us to determine whether the prefetcher’s
current stride is stride 1 or stride 2. The experimental results are
shown in Figure 4.

1 void prime(int range , int stride_1 , int stride_2){
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Fig. 4: Experimental results of the page prefetcher triggering mech-
anism.

2 uint8_t *ptr = (uint8_t *)mmap(NULL , 4096 * 4096, ...);
3 for (int i = 0; i < range; i++) {
4 MEM(ptr + 1 * i * 4096 + 0 * 64);
5 flushAll(ptr + 1 * i * 4096, 0, 64); // flush pages
6 }
7 // train the novel prefetcher
8 for(int i = 0; i < tr_1; i++)
9 MEM(ptr + stride_1 * i * 4096);

10 flush(ptr);
11 for(int i = 0; i < tr_2; i++)
12 MEM(ptr + stride_2 * i * 4096);
13 // test whether the stride is stride_2
14 time(ptr[offset + stride_2 * 4096]);
15 //test whether the stride is still stride_1
16 time(ptr[offset + stride_1 * 4096]); }

Listing 2: Microbenchmark pseudo-code for detecting the confidence
and stride updating policy of the page prefetcher.

In our experiment, as shown in Figure 4, stride 1 and stride 2
are configured to 2 and 3, respectively. It was observed that training
the prefetcher with the same stride twice is sufficient to increase the
confidence to the threshold, thereby triggering a prefetch request. For
Xeon, the maximum stride could be 16,384 bytes (4× 4096 bytes).

D. Page Prefetcher v.s. IP-stride Prefetcher

It seems that the page prefetcher is similar to the traditional IP-
stride prefetcher (i.e., prefetching data with cache line granularity) in
Intel processors. We can find that the IP-stride prefetcher leverages
the least significant (LS) 8 bits of the IP to index instead of the LS
10 bits used by the page prefetcher.

E. When the Page Prefetcher be Activated?

As shown in Augury [32], the prefetcher in Apple’s chips could
be activated using only speculative accesses. To explore whether the
page prefetcher can also be triggered during speculative execution,
we conducted following experiments.

The testing gadget is presented in Listing 3. For the last i that is
equal to the array size, the branch predicts unit (BPU) for the
condition within the loop has been trained to predict taken, and
mispredicts to conduct the speculatively executes of load. If the
prefetcher can be triggered via speculation only, the (i+1) ∗ stride
will be prefetched into the cache. The result that the last line timing
function gets lower latency shows the data has been prefetched to L1
after the speculative execution, as we showed in Figure 5.

1 flush_all_mem(mem , sizeof(mem))
2 for (int i = 0; i <= array_size; i++) {
3 // i will be iter in 0, 1, ..., array_size
4 // 0, 1, ..., array_size -1 will train BPU to be taken
5 if (i < access_evicted_memory_containing(array_size))
6 z = mem[i * stride]
7 }
8 timing(load(mem[array_size * stride ]))

Listing 3: Trigger hardware data prefetcher even within the mis-
prediction execution.
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Fig. 5: Prefetcher could be triggered in both architectural execution
and speculative accesses.

VI. CASE STUDY

A. Exploiting with Spectre V1 Attack

Various defenses have been proposed at the hardware level [7], [8],
[13], with a focus on achieving good performance and low-cost than
software mitigation such as using lfence memory barrier instruction.
Among these, taint tracking of transient data loads and the elimination
of secret-related cache side effects are notable. However, prefetcher
side effects, triggered by cache access, are usually not considered
in these defenses. If a prefetcher is maliciously trained, it may lead
to defense failure. The residual effect of a stride prefetch (i.e., the
prefetched index result minus the stride) can reveal secrets.

Considering that this kind of defense has not yet been deployed
to the real hardware for the time being. For the convenient experi-
ment, We used the clflush instruction to ensure that the direct load
instructions’ effect within speculative execution is eliminated. This
simple method ensures that there are no cache side effects caused
by loads within shared memory, rendering this Spectre V1 gadget
unexploitable. In short, we can achieve an effect similar to the above
defense mechanism. This could also apply to Spectre V2 [19], [33].

1 void victim_func(i) {
2 if (i < access_evicted_memory_containing(array1_size))
3 x = array1[i]; z = array2[x];
4 flush(& array2[x]) }
5 for (int i = 0; i < array_size; i++)
6 victim_func(i) // training spectre gadget
7 for (int i = 0; i < train_size; i++)
8 stride_train(i) // training stride -prefetcher
9 // prepare cache state

10 flush_all_mem(array2 , sizeof(array2))
11 // conduct Spectre V1 attack
12 victim_func(array1_size + secret_offset)
13 // retrieve attack results
14 timing(load(array2[potential_secret * stride ]))

Listing 4: Using hardware data prefetcher to benefit the Spectre V1.

B. Exploiting as Covert Channel between Kernel and User

As we have verified that this prefetcher is not isolated between dif-
ferent privilege modes, we can exploit this characteristic to construct
a covert channel between two security levels, such as between user
and kernel modes. To create IP collisions, we can use IP matching,
as proposed by previous work, to deduce the low 10-bit offset of the
stride load instruction. Fortunately, the search space for this prefetcher
is limited to only 1024 possibilities. In addition to the inability to
trigger the prefetch, there will be no exception for the wrong IP
probe.

In detail, if the sender wants to transmit a bit 1, it triggers multiple
cache misses at one loading IP using a loop to train the page
prefetcher. The receiver triggers the sender’s gadget, executes the



collision IP, and probes if this IP has page-prefetched data to infer
the secret information from this channel.

a) Evaluation: In the experimental evaluation in Xeon 8488C,
we used this page prefetcher to send 100 random bits 3 times, as we
showed one of them on Figure 6. Ultimately, we achieved an average
transmission rate of 3332 bps (std: 219.2), with an error rate of about
8.9% (std: 2.2). Compared to previous work, such as AfterImage (833
bps, 6% error rate), this page prefetcher achieves significantly higher
maximum bandwidth with similar error rates.
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Fig. 6: The timing of sending “0” and sending “1” with PPA. Sending
100 random bits with a 6.9% error rate.

C. Exploiting the Kernel Gadget to Leak Secrets

Previous research like AfterImage has demonstrated that the IP-
stride prefetcher could be exploited to leak secret-dependent branch
information. We followed the same setting and used the IP matching
method to create a low 10-bit collision between the user and kernel’s
load instruction.

Listing 5 shown the vulnerable kernel gadget. The attacker running
in the userspace calls the syscall or other API that would execute the
vulnerable kernel gadget. After the execution of that gadget is trained,
the attacker flushes the data out of the cache and reloads the data to
see in which stride the data will be prefetched to caches. Finally,
using the prefetched stride result from the userspace execution, the
attacker can infer whether the branch is taken or not to get the secret.

1 void vulnerable_kernel_function(int secret) {
2 int stride = 1
3 if (secret == 0x42) { stride = 2 }
4 for (int i = 0; i < 10; i++)
5 _data[i] = _arr[i * stride * page_size]
6 }

Listing 5: Vulnerable kernel secret-dependent branch.

D. Realistic Attack Targets Intel SGX

a) Victim Code within Intel SGX: The MbedTLS library, im-
plementing the Montgomery-Ladder RSA [6], can be resident in the
Intel SGX enclave [31] for better security. The enclave is a trusted
execution environment that can protect the code and data from the
untrusted host, even the privileged attacker. We use the MbedTLS
shown in the previous work [6], [20] to demonstrate the attack.

b) Attack: We already demonstrate that the page prefetcher
lacks isolation between untrusted zone and SGX enclave at Sec-
tion ??. For a realistic attack, the attacker first trains the page
prefetcher with a load instruction that is aligned to load within the
secret-dependent branch. Then the attacker ecall into the enclave to
trigger the secret-dependent branch. The attacker can use the SGX-
Step [31] framework to trigger page faults and hijack the control flow
of the victim for more precise control in single-stepping the victim
code. After the enclave finishes the execution, the attacker can re-
execute the load instruction and measure the timing of accessing the
prefetched target to determine whether the prefetcher is triggered to
infer whether the victim has executed that branch.
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Fig. 7: Attack results of modpow within Intel SGX via
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TABLE II: Summary of hardware data prefetcher attack.

Paper Target What’s New

Unveiling
Prefetcher [29]

IP-Stride Prefetcher +
L1/L2/LLC

First SCA
via Prefetcher

Fetching Tale [11] IP-Stride Prefetcher Covert Channel

Augury [32] Pointer-Chasing
Prefetcher + L1/L2/LLC

Uncover
New Prefetcher

AfterImage [6] IP-Stride Prefetcher Algorithm Agnostic

GoFetch [4] Pointer-Chasing
Prefetcher + L1/L2/LLC Characterization

Fetchbench [28] Multiple Prefetchers Systematic Review
PREFETCHX [5] XPT Prefetcher New Prefetcher
ShadowLoad [17] Stride Prefetcher New Exploitation
PPA (This wrok) Page Prefetcher New Chara. & Explo.

c) Evaluation: We evaluate the attack on an Intel SGX-enabled
machine with an Intel Xeon 6438Y+ chip. We use the SGX SDK to
build the enclave and the attacker thread. We use a similar victim
gadget as introduced in the previous work [6] within Intel SGX and
achieve a success rate of 98.76% in leaking 16-bit secret keys 5 times.
We present the leakage results of one of the attacks in Figure 7.

VII. MITIGATION DISCUSSION

For Spectre attacks, some work focuses on removing touchable
secrets, such as widescale deployment of policies like browser’s site
isolation [24]. Similarly idea, KPTI [15] removed virtual address
mappings for the kernel from userspace processes. For PPA, avoiding
writing secret-dependent accesses could be practical.

In response to identified threats, various potential defenses have
been proposed to mitigate the risks associated with prefetcher or
related vulnerabilities. These defenses range from architectural mod-
ifications to software-based approacxhes aimed at detecting and
preventing malicious exploitation of prefetchers. From hardware,
some work proposes to elimination of secret-related cache side
effects to prevent the information leakage [7], [8], [13]. For safety-
critical applications, disabling the hardware prefetcher or isolating
it between privilege boundaries may be an appropriate hardware
mitigation.

VIII. RELATED WORKS

The data prefetcher is a critical component of modern server CPUs,
designed to eliminate future cache misses. By recording historical
memory access patterns, it speculatively loads memory data into the
cache that might be accessed in the future. Extensive research has
been conducted on hardware data prefetchers reverse-engineering, in-
cluding studies such as Unveiling Prefetcher [29], Fetching Tale [11],
Augury [32], AfterImage, GoFetch, and PREFETCHX [5]. Each of
these studies focuses on specific types of hardware prefetchers, such
as IP-Stride Prefetchers and Data Memory-Dependent Prefetchers
(DMPs). Due to the widespread deployment and unified model of
the IP-Stride Prefetcher, FetchBench was proposed to avoid the need



for manual analysis of each microarchitecture. However, coarse gran-
ularity work lacks understanding and detailed modeling of attributes
in each prefetcher such as Intel Xeon Processors’ page prefetcher,
which are addressed by this work. We have summarized the research
forward and the key contribution of each related work at Table II.

IX. CONCLUSION

In this work, we conducted an in-depth reverse-engineering anal-
ysis to characterize Intel’s IP-stride page prefetcher, a hardware data
prefetcher capable of prefetching instructions at page-level strides.
Our analysis revealed critical insights into the functionality and
vulnerabilities of this prefetcher.
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