
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3719027.3765022
.

.

RESEARCH-ARTICLE

WPC: Weight Plaintext Compression for CNN Inference based on RNS-
CKKS

GUIMING SHI, Tsinghua University, Beijing, China
.

YUCHEN WEI, Tsinghua University, Beijing, China
.

SHENGYU FAN, University of Chinese Academy of Sciences, Beijing, China
.

XIANGLONG DENG, University of Chinese Academy of Sciences, Beijing, China
.

LIANG KONG, Ant group, Hangzhou, Zhejiang, China
.

XIANBIN LI, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
.

View all
.

.

Open Access Support provided by:
.

Tsinghua University
.

Ant group
.

University of Chinese Academy of Sciences
.

Hong Kong University of Science and Technology
.

PDF Download
3719027.3765022.pdf
25 December 2025
Total Citations: 0
Total Downloads: 934
.

.

Published: 19 November 2025
.

.

Citation in BibTeX format
.

.

CCS '25: ACM SIGSAC Conference on
Computer and Communications Security
October 13 - 17, 2025
Taipei, Taiwan
.

.

Conference Sponsors:
SIGSAC

CCS '25: Proceedings of the 2025 ACM SIGSAC Conference on Computer and Communications Security (November 2025)
hps://doi.org/10.1145/3719027.3765022

ISBN: 9798400715259

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3719027.3765022
https://dl.acm.org/doi/10.1145/3719027.3765022
https://dl.acm.org/doi/10.1145/contrib-99661638824
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/contrib-99660932761
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/contrib-99661637546
https://dl.acm.org/doi/10.1145/institution-60027363
https://dl.acm.org/doi/10.1145/contrib-99661637725
https://dl.acm.org/doi/10.1145/institution-60027363
https://dl.acm.org/doi/10.1145/contrib-99661638776
https://dl.acm.org/doi/10.1145/institution-60121285
https://dl.acm.org/doi/10.1145/contrib-99661230771
https://dl.acm.org/doi/10.1145/institution-60008592
https://dl.acm.org/doi/10.1145/3719027.3765022
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/institution-60121285
https://dl.acm.org/doi/10.1145/institution-60027363
https://dl.acm.org/doi/10.1145/institution-60008592
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3719027.3765022&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/ccs
https://dl.acm.org/conference/ccs
https://dl.acm.org/sig/sigsac
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3719027.3765022&domain=pdf&date_stamp=2025-11-22

WPC: Weight Plaintext Compression for CNN Inference based on
RNS-CKKS

Guiming Shi
Tsinghua University

Beijing, China
sgm24@mails.tsinghua.edu.cn

Yuchen Wei
Tsinghua University

Beijing, China
weiyc22@mails.tsinghua.edu.cn

Shengyu Fan
Chinese Academy of Sciences

Beijing, China
University of Chinese Academy of Sciences

Beijing, China
fanshengyu@iie.ac.cn

Xianglong Deng
Chinese Academy of Sciences

Beijing, China
University of Chinese Academy of Sciences

Beijing, China
dengxianglong@iie.ac.cn

Liang Kong
Ant Group

Beijing, China
kongliang.kong@antgroup.com

Xianbin Li
The Hong Kong University of Science and Technology

Hong Kong, China
xligt@connect.ust.hk

Jingwei Cai
Tsinghua University

Beijing, China
caijw21@mails.tsinghua.edu.cn

Shuwen Deng
Department of Electronic Engineering

Tsinghua University
Beijing, China

Zhongguancun Laboratory
Beijing, China

shuwend@tsinghua.edu.cn

Mingzhe Zhang∗
Ant Group

Beijing, China
smartzmz@gmail.com

Kaisheng Ma∗
Tsinghua University

Beijing, China
kaisheng@tsinghua.edu.cn

Abstract

Convolutional neural network (CNN) inference based on RNS-
CKKS enables secure processing on encrypted data but introduces
significant weight size overhead. Weight plaintext, weight in RNS-
CKKS format, can reach tens to hundreds of gigabytes. Existing com-
pression methods either add high computational cost or yield low
compression rates. In this work, we propose WPC, Weight Plaintext
Compression, to compress weight plaintext for RNS-CKKS-based
CNN inference.We observe that the transformation from the weight
in CNN models to the weight plaintext in RNS-CKKS format in-
volves an operation akin to the Discrete Fourier Transform, which
shifts data between the time and frequency domains while retaining
∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1525-9/2025/10
https://doi.org/10.1145/3719027.3765022

redundant information from periodic and discrete data. Based on
this observation, we first introduce the Periodic Transmit Theorem,
which states that periodic patterns can be preserved during the
transformation process, thereby enabling compression. We then
propose Channel Innermost Packing Scheme and Rotation Padding
to rearrange the weight data into periodic patterns for compression.
Results show that WPC achieves 1.25 to 2.18 times speedup on an
A100 GPU and 46.08 to 139.11 times compression rate.

CCS Concepts

• Security and privacy → Privacy-preserving protocols.

Keywords

FHE; RNS-CKKS; CNN; Plaintext Compression; Periodic Transmit

ACM Reference Format:

Guiming Shi, Yuchen Wei, Shengyu Fan, Xianglong Deng, Liang Kong,
Xianbin Li, Jingwei Cai, Shuwen Deng, Mingzhe Zhang, and Kaisheng Ma.
2025. WPC: Weight Plaintext Compression for CNN Inference based on
RNS-CKKS. In Proceedings of the 2025 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’25), October 13–17, 2025, Taipei, Taiwan.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3719027.3765022

4094

https://orcid.org/0009-0003-0663-0863
https://orcid.org/0009-0003-5752-5422
https://orcid.org/0009-0009-9160-8540
https://orcid.org/0009-0002-2058-5109
https://orcid.org/0009-0009-6031-4312
https://orcid.org/0000-0003-4097-9367
https://orcid.org/0009-0003-7560-8141
https://orcid.org/0000-0002-9782-5038
https://orcid.org/0000-0002-6440-7550
https://orcid.org/0000-0001-9226-3366
https://doi.org/10.1145/3719027.3765022
https://doi.org/10.1145/3719027.3765022

CCS ’25, October 13–17, 2025, Taipei, Taiwan Guiming Shi et al.

1 Introduction

RNS-CKKS [13, 14]-based Convolutional Neural Network (CNN)
inference [32] provides a promising approach for secure inference
in various applications, including those in financial and healthcare
domains [27, 45]. In this approach, the user’s sensitive data is en-
crypted and sent to the cloud, where the CNN model is executed
on the encrypted data. The encrypted output is then sent back to
the user, who can decrypt it to obtain the final result. This process
ensures the privacy of the user’s sensitive data while maintaining
the confidentiality of the cloud model.

However, the security provided by the RNS-CKKS scheme comes
at a significant cost in terms of data expansion, particularly for
the weight plaintext, which represents the weights in RNS-CKKS
format. For example, the original ResNet-50 model [23] are only
0.11 GB, but the weight plaintext in RNS-CKKS format can reach
up to 306 GB, leading to a storage size increase of over 1,000×. This
surge in weight plaintext size poses severe storage and memory
challenges, especially on hardware with limited memory capacity,
such as the A100 GPGPU with 80 GB of memory.

Previous compression techniques attempt to address the surge
in weight plaintext size but suffer from significant drawbacks, such
as high computational overhead [24, 32] or lower compression
rates [26]. For instance, MPCNN [2, 32] generates the weight plain-
text on-the-fly, allowing the original CNN weights to be stored;
however, this incurs a latency overhead of 2.07× for the ResNet-50
model. NeuJeans [24] employs a Coefficients-in-Slot (CinS) encod-
ing scheme to reduce the size of weight plaintext and achieves the
state-of-the-art performance for convolution layers. However, this
encoding restricts computational graph optimizations, leading to
higher computational overhead compared to MPCNN [32] when
the cost of on-the-fly generation is ignored and graph optimizations
are feasible. Additionally, HyPHEN [26] exploits weight plaintext
reusability, but achieves limited compression rates, which still poses
memory limitations for large models.

In this work, we propose WPC, a Weight Plaintext Compression
method designed to compress the weight plaintext in RNS-CKKS-
based CNN inference. By analyzing the transformation process from
CNN weights to weight plaintext, we observe that this process resem-
bles a Discrete Fourier Transform (DFT)-like operation [47], which
facilitates the exchange of periodic and discrete values between the
time and frequency domains. Building on this observation, we ex-
ploit the weight-sharing property [31] in CNN models, enabling
the identification of periodic patterns prior to the transformation.

Building on this insight, we first propose and prove the Periodic
Transmit Theorem in the RNS-CKKS scheme, which asserts that
periodic patterns in the weight data can be transmitted into the
weight plaintext, making it compressible. The transformation from
weight data to weight plaintext can be viewed as an Inverse Discrete
Fourier Transform (Slot Encoding) following a Negative Wrapped
Number Theoretic Transform (NWNTT), both of which satisfy the
properties of DFT. This process converts periodic data into discrete
data and then back to periodic data, allowing only a single copy of
the final periodic data to be stored, thereby enabling compression, as
illustrated in Fig. 1.

Second, we introduce the Channel Innermost Packing Scheme
(CIPS) and Rotation Padding techniques to rearrange the weight

Periodic Data
DFT-like→

Slot Encoding
Discrete Data

DFT-like→
NWNTT

Periodic Data

Figure 1: Periodic Transmit Theorem in RNS-CKKS.

data into a periodic pattern, leveraging the Periodic Transmit The-
orem. The weight-sharing property [31] causes the weight data
to exhibit repetition before transformation, as the same weight is
shared by neurons in the output ciphertext across different heights
and widths but within the same channel. CIPS arranges the neurons
in the output ciphertext by placing the channel dimension as the
innermost dimension, while height and width are placed in the
outermost dimensions. This arrangement makes part of the data
periodic, as the weights are shared across the outermost dimen-
sions. Rotation Padding further ensures that other non-periodic
data (caused by zero padding [6]) becomes periodic by padding
adjacent neurons in the output ciphertext. Together, CIPS and Ro-
tation Padding ensure that all data is periodic before transmission,
enabling compression through the Periodic Transmit Theorem.

We evaluate WPC on the ResNet [23] and VGG [49] CNNmodels
using the ImageNet, Tiny-ImageNet [18], and CIFAR [28] datasets,
and assess its performance on both CPU and GPU. Results show
that WPC reduces the weight plaintext size by a factor of 46.08 to
139.11, while maintaining or improving model performance by a
factor of 1.25 to 2.18 on the A100 GPGPU with 80 GB of memory.
By leveraging WPC, even the ResNet-200 model, which requires
only 7.90 GB of memory compared to the baseline’s 1098.99 GB,
can be executed on the A100 GPGPU with 80 GB of memory.

To summarize, the main contributions of this work are as follows:

• We propose and prove the Periodic Transmit Theorem in the
RNS-CKKS scheme, enabling compression of periodic data.

• We introduce the Channel Innermost Packing Scheme and
Rotation Padding techniques to make weight data in the
weight plaintext periodic and compressible, supported by
the Periodic Transmit Theorem.

• We demonstrate the effectiveness of WPC through compre-
hensive evaluations on CNN models, achieving high com-
pression ratios and significant performance improvements.

2 Background

This section introduces Fully Homomorphic Encryption (FHE), RNS-
CKKS scheme, the CNN model with its RNS-CKKS-based CNN
inference, and the threat model of this work. The notations and
parameters of this work are shown in Tab. 1.

2.1 FHE and RNS-CKKS

Fully Homomorphic Encryption (FHE) [22] is a cryptographic tech-
nique that allows arbitrary computation on the ciphertext and the
result is the same as its unencrypted counterpart computation.
CKKS [14] is a widely used FHE scheme as it supports arithmetic
fixed-point operations efficiently. This work uses RNS-CKKS [13],
the Residue Number System version of CKKS for its high efficiency
in arithmetic operations, which is widely used in the RNS-CKKS-
based CNN inference [10, 32, 37, 42, 46].

4095

WPC: Weight Plaintext Compression for CNN Inference based on RNS-CKKS CCS ’25, October 13–17, 2025, Taipei, Taiwan

Table 1: Notations and Parameters. c, h,w, co, ci, kh, kw, i, o de-

note the index of channel, height, width, output channel,

input channel, kernel height, kernel width, input ciphertext,

and output ciphertext, respectively, in CNN Parameter.

Parameter Description

𝑁 Polynomial Ring Degree
𝑄 Coefficient Modulus
𝑃 Key Switching Modulus
𝑙 Ciphertext Level
Δ Scale Factor

𝐿𝑏𝑜𝑜𝑡 Maximum Level after Bootstrapping
𝜆 Security Parameter

Data Types Description

sk, pk and evk Secret, Public and Evaluation Key
ct, pt and m Ciphertext, Plaintext and Message

slot Slot Encoding Element of ct and pt

Plaintext Description

ptM: Message Representation Message Data Before Encoding
ptC: Coefficient Representation Plaintext Coefficient
ptE: Evaluation Representation NTT Coefficient of the Plaintext

RNS-CKKS Operations Description

HAdd(ct, ct′) Element-wise Addition
HMul(ct, ct′) Element-wise Multiplication
HRot(ct, 𝑟) Cyclic Rotation

CNN Parameter Description

Cin, Hin, Win Input Channel, Height and Width
Cout, Hout, Wout Output Channel, Height and Width
KH, KW, SH, SW Kernel, Stride Height and Width

PHB, PHE, PWB, PWE
Padding on the Beginning and End
of the Height and Width Dimension

𝑥 ∈ RCin×Hin×Win Input Neuron Tensor
𝑤 ∈ RCout×Cin×KH×KW Weight Tensor
𝑦 ∈ RCout×Hout×Wout Output Neuron Tensor
𝑥 [c, h,w], 𝑦 [c, h,w] Input and Output Tensor Indexing
𝑤 [co, ci, kh, kw] Weight Tensor Indexing
ctx[i], cty[o] Input, Output Ciphertext Indexing
𝑛𝑖𝑛 , 𝑛𝑜𝑢𝑡 Input, Output Ciphertext Number

ctr[i, c, kh, kw] Rotation Ciphertext Indexing
ptw[o, i, c, kh, kw] Weight Plaintext Indexing

2.1.1 RNS-CKKS. The ciphertext ct ∈ R2
𝑄

is a pair of polyno-
mials with degree 𝑁 and coefficient modulus 𝑄 , where R𝑄 =

Z𝑄 [𝑋]/(𝑋𝑁 + 1) is the cyclotomic polynomial ring. 𝑄 is a product
of 𝑙 + 1 prime numbers, where 𝑙 is the ciphertext level. 𝑃 is the key
switching [20] modulus to support the homomorphic operations.
Decrypt the ciphertext ⟨ct, sk⟩ = pt + e, where ct, sk, pt, e, and
⟨·, ·⟩ are the ciphertext, secret key, plaintext, error term, and dot
product operation, respectively. The plaintext pt is encoded from
the message vector m and each element of the message vector in
the ciphertext or plaintext is called a slot [14]. All the setting in
this work satisfies the security parameter 𝜆 ≥ 128 bits.

2.1.2 Plaintext Representation and Conversion. The plaintext has
three representations: message ptM, coefficient ptC, and evaluation

ptE, where ptE denotes the default representation in RNS-CKKS
for efficient homomorphic operations. The conversion of them are:

ptM
𝑆𝑙𝑜𝑡 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔

→ ptC
𝑁𝑊𝑁𝑇𝑇→ ptE (1)

Slot Encoding The message ptM = m = (𝑚[0], . . . ,𝑚[𝑁2
−1]) is encoded into a plaintext polynomial ptC, where the message
is a length 𝑁 /2 real or complex numbers vector. The conversion
between message vector ptM and plaintext coefficient ptC is per-
formed by computing the Inverse Discrete Fourier Transform (IDFT

on {𝜔−5𝑘 }
𝑁
2 −1
𝑘=0 , where 𝜔2𝑁 = 1, 𝑁2 is number of slots) [47] of ptM,

multiplied with the scale factor Δ, rounding ⌊ ⌉, splitting the real
and imaginary part and placed into the equal interval coefficient in
the plaintext polynomial. Slot Encoding (Equation 2):

M = ⌊Δ · IDFT(ptM) ⌉
ptCi [𝑗] = REAL(M) [𝑗] mod 𝑞𝑖

ptCi [𝑗 +
𝑁

2
] = IMAG(M) [𝑗] mod 𝑞𝑖

�������� 𝑖 ∈ [0 . . ℓ], 𝑗 ∈ [0 . . 𝑁
2
), (2)

where REAL and IMAG are the real and imaginary part of the
complex number,𝑞𝑖 is the modular of plaintext at level 𝑖 and ptCi [𝑗]
is the 𝑗-th coefficient of plaintext at level 𝑖 .
Negative Wrapped Number Theoretic Transform Number
Theoretic Transform (NTT) with negative wrapped convolution
(NWNTT) [38, 44] can speed up the polynomial multiplication in
the cyclotomic polynomial ring Z𝑞 [𝑋]/(𝑋𝑁 + 1) in RNS-CKKS,
which converts the coefficient representation ptC of the plaintext
to the evaluation representation ptE. NWNTT (Equation 3):

ptEi = NTT(ptCi [𝑗] ·𝜓 𝑗

𝑖
mod 𝑞𝑖)

��� 𝑖 ∈ [0 . . ℓ], 𝑗 ∈ [0 . . 𝑁), (3)

where 𝑞𝑖 is the modular at level 𝑖 ,𝜓𝑖 is the 2𝑁 -th root of unity in
Z𝑞𝑖 and pti [𝑗] is the 𝑗-th coefficient of plaintext at level 𝑖 .
Periodic and Discrete Conversion NTT is the generalization
of the DFT in the modular arithmetic domain [7], so these two
operations (IDFT and NTT) keep the DFT property:

Lemma 1. Periodic and Discrete Conversion [47]: For a length
𝑛 data 𝑥 with a period of 𝑇 , the Discrete Fourier Transform of 𝑥 has
discrete values at integer multiples of 𝑛/𝑇 , and vice versa.

This Lemma forms the basis for the periodicity of DFT, which plays
a key role in the compression of weight plaintext in this work. This
demonstrates that periodic or discrete data have the potential to be
compressed in the conversion process.

We present the proof of Lemma 1 below. Assume 𝜔 is the 𝑛-th
root of unity (𝜔𝑛 = 1) and𝑚 is an integer.

Lemma 1 (𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐
𝐷𝐹𝑇→ 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒): 𝑋 = DFT(𝑥) is nonzero only at

indices 𝑘 =𝑚 𝑛
𝑇
if data 𝑥 is a length 𝑛 vector with period 𝑇 :

Proof. 𝑋 [𝑘] =
∑𝑛−1
𝑖=0 𝑥 [𝑖]𝜔𝑘𝑖 =

∑ 𝑛
𝑇
−1

𝑗=0
∑𝑇−1
𝑖=0 𝑥 [𝑖]𝜔𝑘 (𝑗𝑇+𝑖) =∑𝑇−1

𝑖=0 𝑥 [𝑖]𝜔𝑘𝑖 ∑ 𝑛
𝑇
−1

𝑗=0 𝜔𝑘 𝑗𝑇 , where 𝑥 [𝑖] = 𝑥 [𝑖 mod 𝑇]. As 1−𝜔𝑘𝑛 =

0. If 𝑘 is not an integer multiple of 𝑛
𝑇
. 1 − 𝜔𝑘𝑇 ≠ 0 and 𝑋 [𝑘] =∑𝑇−1

𝑖=0 𝑥 [𝑖]𝜔𝑘𝑖 1−𝜔𝑘𝑛

1−𝜔𝑘𝑇 = 0, where the final equality holds by apply-
ing the formula for the sum of a geometric series. Thus,𝑋 is nonzero
only at indices 𝑘 =𝑚 𝑛

𝑇
. □

Lemma 1 (𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒
𝐷𝐹𝑇→ 𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐): 𝑋 = DFT(𝑥) is periodic with

period 𝑇 if 𝑥 is nonzero only at indices 𝑘 =𝑚 𝑛
𝑇
:

4096

CCS ’25, October 13–17, 2025, Taipei, Taiwan Guiming Shi et al.

Figure 2: Zero Padding on Input Tensor 𝑥 ∈ R2×2×2
to Gener-

ate the Padded Tensor 𝑥𝑝 ∈ RCin×(PHB+Hin+PHE)×(PWB+Win+PWE)

with PHB = PWB = PWE = 0 and PHE = 1.

Proof. 𝑋 [𝑘] = ∑𝑛−1
𝑖=0 𝑥 [𝑖]𝜔𝑘𝑖 =

∑𝑇−1
𝑗=0 𝑥 [𝑗

𝑛
𝑇
]𝜔𝑘 · 𝑗

𝑛
𝑇 ; For𝑘 < 𝑛−

𝑇 , 𝑋 [𝑘 + 𝑇] =
∑𝑇−1
𝑗=0 𝑥 [𝑗

𝑛
𝑇
]𝜔 (𝑘+𝑇) · 𝑗 𝑛

𝑇 =
∑𝑇−1
𝑗=0 𝑥 [𝑗

𝑛
𝑇
]𝜔𝑘 · 𝑗

𝑛
𝑇
+𝑗𝑛 =

𝑋 [𝑘], where the last equality holds because 𝜔 𝑗𝑛 = 1. Thus, 𝑋 is
periodic with period 𝑇 . □

This lemma holds for all DFT-based operations, including the
NTT and IDFT, as long as the condition 𝜔𝑛 = 1 is satisfied.

2.1.3 Homomorphic Operations. The encoding of ciphertext before
encryption influences the homomorphic operations on the cipher-
text. Slot Encoding supports element-wise addition, multiplication,
and cyclical rotation operations on each slot of the ciphertext. Coef-
ficient Encoding encodes the message vector into the coefficient of
the polynomial [25] and supports element-wise addition and con-
volution on these coefficients. Assume m and m1 are the message
representation of ct and ct1 (pt1).
Homomorphic Operation of Slot Encoding

HAdd(ct, ct1𝑜𝑟 pt1) : (𝑚[0]+𝑚1[0], . . . ,𝑚[𝑁2 −1]+𝑚1[𝑁2 −1]);
HMul(ct, ct1𝑜𝑟 pt1) : (𝑚[0]×𝑚1[0], . . . ,𝑚[𝑁2 −1]×𝑚1[𝑁2 −1]);
HRot(ct, 𝑟) : (𝑚[𝑟], . . . ,𝑚[𝑁2 − 1], . . . ,𝑚[𝑟 − 1]),
where 𝑟 is the rotation step and 𝑟 > 0 means left rotation. HAdd

and HMul also support the operation between ciphertext and plain-
text. HMul between ciphertexts and HRot with different rotation
steps need different evaluation keys evk.

2.1.4 Bootstrapping andManagement. The ciphertext of RNS-CKKS
only supports a limited depth of homomorphicmultiplication, which
is determined by its level. When the ciphertext level 𝑙 is reduced
to 0, it cannot be used for further homomorphic multiplication.
Bootstrapping [12, 34] is a time-consuming operation to recover
the ciphertext to a higher level 𝐿𝑏𝑜𝑜𝑡 for further computation. The
placement of bootstrapping within the computation graph is crucial
for reducing RNS-CKKS overhead, which requires careful manage-
ment, as demonstrated by Dacapo [16].

2.2 CNN Model and Weight-Sharing Property

Convolution Neural Network (CNN) [23, 29, 50] is a widely used
deep learning model for image classification [18], object detec-
tion [9], and segmentation [39]. CNN consists of multiple layers,
including the convolution layer [30], activation layer [41], pooling
layer [3, 5], and fully connected layer [4], to extract the features of
the input image. The most important and time-consuming layer in
CNN is the convolution layer.

2.2.1 Convolution Layer. For an input tensor 𝑥 ∈ RCin×Hin×Win ,
the convolution layer applies theweight filters𝑤 ∈ RCout×Cin×KH×KW

Figure 3: Packing the Output Tensor𝑦 ∈ R2×2×2
in the Output

Ciphertext cty using the CHW Packing Scheme [17]. The

neuron is packed from the ciphertext first slot to the last slot

according to the width, height, and channel dimension of 𝑦.

to the input tensor to generate the output tensor𝑦 ∈ RCout×Hout×Wout .
The parameters of convolution layer are defined in Tab. 1.
Zero PaddingThe input tensor 𝑥 ∈ RCin×Hin×Win is usually padded
with zeros [6] at the beginning and end of the height and width di-
mensions to generate the padded tensor 𝑥𝑝 ∈ RCin×(PHB+Hin+PHE)×
(PWB+Win+PWE) , as shown in Fig. 2.
Convolution Operation For each output tensor data𝑦 [𝑐𝑜 , ℎ𝑜 ,𝑤𝑜],
𝑐𝑜 ∈ [0 . . Cout), ℎ𝑜 ∈ [0 . . Hout),𝑤𝑜 ∈ [0 . . Wout), the convolu-
tion operation is defined as:

𝑦 [𝑐𝑜 , ℎ𝑜 , 𝑤𝑜] =
Cin−1∑︁
𝑐𝑖=0

KH−1∑︁
𝑘ℎ=0

KW−1∑︁
𝑘𝑤=0

𝑥𝑝 [𝑐𝑖 , ℎ𝑜SH + 𝑘ℎ, 𝑤𝑜SW + 𝑘𝑤]

× 𝑤 [𝑐𝑜 , 𝑐𝑖 , 𝑘ℎ, 𝑘𝑤] + 𝑏 [𝑐𝑜],

(4)

where 𝑥𝑝 is the padded input tensor and 𝑏 is the bias. The to-
tal storage overhead of the weights in the convolution layer is:
CoutCinKHKW × 8Byte, where Cout, Cin, KH, KW, and 8Byte repre-
sent the number of output channels, input channels, height, and
width of the convolutional weight kernel, and the bit length of the
float64 number, respectively.
Down-sample Layer A down-sample layer is a type of pooling or
convolutional layer that reduces the height and width of the output
tensor using a stride SH > 1 or SW > 1.

2.2.2 Weight-Sharing Property. The weight-sharing property of the
convolution layer is that the same weight is applied to all the
height and width of the output tensor with the same channel (e.g.,
𝑦 [0, ℎ𝑜 ,𝑤𝑜], ℎ𝑜 ∈ [0 . . Hout),𝑤𝑜 ∈ [0 . . Wout)), which can be
leveraged to reduce the memory and storage overhead.

2.3 RNS-CKKS-based CNN and Weight Plaintext

Expansion

The computation pattern of the RNS-CKKS-based CNN model dif-
fers from its unencrypted counterpart because of the vectorized
homomorphic operations (HAdd, HMul, and HRot) on the cipher-
text. Here, we focus on the convolutional layer of the RNS-CKKS-
based CNN inference model. All data in Fig.3 and Fig.4 represent
the encoded/encrypted weights and neurons indices in the plaintext
and the ciphertext within the RNS-CKKS scheme.

2.3.1 CHW [17] Packing Scheme. Figure 3 shows an example of the
CHW packing scheme [17] of the output tensor 𝑦 ∈ R2×2×2. The
output tensor 𝑦 ∈ R2×2×2 is packed into the output ciphertext cty
according to the sequence of width, height, and channel dimension
of the tensor, where the channel is the outermost dimension and
width is the innermost dimension. Figure 4 shows the RNS-CKKS
computation of the convolutional layer using the CHW packing

4097

WPC: Weight Plaintext Compression for CNN Inference based on RNS-CKKS CCS ’25, October 13–17, 2025, Taipei, Taiwan

Figure 4: RNS-CKKS Computation of the Convolutional

Layer using CHW Packing Scheme [17].

scheme [17]. The input ciphertext ctx[0] is rotated (HRot) to gen-
erate the rotation ciphertext ctr to match the input channel size
(rotation step r=4) and the kernel size (r=2 and r=6) of the weight
filter𝑤 ∈ R2×2×2×1. Then these rotation ciphertexts are multiplied
(HMul) with the weight plaintext ptw and summation (HAdd) into
the output ciphertext cty[0]. The output ciphertext adds (HAdd)
the bias plaintext to generate the final output ciphertext, which is
ignored in Fig. 4. There are some packing optimizations to further
enhance the performance and are integrated in the RNS-CKKS-
based CNN inference model. Complex Packing [8] leverages the
imaginary part of the weight plaintext to reduce the number of ho-
momorphic operations. Reshaping Layer [48] reshapes the packing
scheme after down-sample convolution into CHW to reduce the
computation complexity and consumes 2 levels of the ciphertext.

2.3.2 Weight Expansion from Unencrypted CNN to RNS-CKKS-

based CNN Model. The weight used in the RNS-CKKS-based CNN
model differs from its unencrypted counterpart, requiring two steps
to generate the weight plaintext, as shown in Fig. 5. First, the weight
of the CNN model is packed into a weight vector, which serves as
the message representation of the weight plaintext. In this step,
due to the weight-sharing property, the weight is shared across the
height and width of the output tensor, causing the weight to be
repeated in the weight plaintext 𝐻𝑜𝑢𝑡𝑊𝑜𝑢𝑡 times, where 𝐻𝑜𝑢𝑡 and
𝑊𝑜𝑢𝑡 represent the height and width of the output tensor. Next, the
weight plaintext is converted into the evaluation representation
using Slot Encoding and the NWNTT operation. On one hand, after
these steps, the repeated pattern in the weight plaintext is removed,
resulting in an increase in storage overhead by a factor of 𝐻𝑜𝑢𝑡𝑊𝑜𝑢𝑡 ,
which accounts for the Weight Repetition expansion. On the other
hand, the weight plaintext must match the level of the input ciphertext
to perform the homomorphic operation, necessitating expansion to
the same level as the input ciphertext. This causes bit expansion by a
factor of 𝑙 + 1, where 𝑙 is the level of the weight plaintext. Through
this process, the weight expansion factor of the weight plaintext is:

Expansionweight plaintext = HoutWout × (𝑙 + 1), (5)

where Hout, Wout, and (𝑙 + 1), represent the height and width of
the output tensor, and the weight plaintext level, respectively.

Figure 5: Weight Expansion in RNS-CKKS-based CNN.

2.4 Threat Model

RNS-CKKS-based CNN inference can protect the privacy of the
user and the cloud during the inference process. The user encrypts
the private data in the input ciphertext according to the first layer’s
input neurons’ packing scheme and sends them to the cloud. The
cloud performs the RNS-CKKS-based CNN inference on the input
ciphertext layer by layer with the weight plaintext and sends the
output ciphertext of the final layer back to the user. The user de-
crypts the output ciphertext to get the inference result according
to the final layer’s output neurons packing scheme.

This work assumes the semi-honest threat model, where the user
and the cloud follow the protocol but try to infer the private data
of others [10, 24, 27, 32, 37]. The user has private data and wants
to get the inference result from the cloud. The cloud has the CNN
model and provides the inference service to the user. The data of
the user and the model of the cloud are secure and not leaked to the
other party. The privacy of the user is protected by the RNS-CKKS
scheme. The model of the cloud is secure as all the homomorphic
operations are performed on the cloud [27, 32].

3 Motivation

The storage size surge caused by weight plaintext expansion in
the RNS-CKKS scheme is a critical issue in RNS-CKKS-based CNN
inference on hardware devices. This issue is particularly signifi-
cant for large RNS-CKKS-based CNN models and motivates the
exploration of Weight Plaintext Compression.

3.1 Drawback of Weight Plaintext Expansion

Slot Encoding supports element-wise operations (i.e., HAdd, HMul)
and delivers efficient inference performance, but it suffers from a
significant increase in weight size in convolutional layers due to
the expansion of weight plaintext, as discussed in §2.3.2. Table 3
presents the weight size and latency for RNS-CKKS-based CNN
inference on a CPU, highlighting the drawback of weight plaintext
expansion. The size of the weight plaintext is 128 GB for ResNet-18
model [23]. This is significantly larger than the size of the weight
data, which is only 0.04 GB. This expansion persists as the CNN
model size increases (e.g., ResNet-50, ResNet-101, and larger mod-
els), demanding more memory and storage. This may cause out-
of-memory issues on hardware with limited memory, such as the
A100 GPGPU with 80 GB of memory.

Related Work and Limitations: Previous work employs sev-
eral methods to reduce the weight size in the RNS-CKKS scheme but
faces either increased computational overhead or lower compres-
sion rates, as shown in Tab. 2. These methods include Coefficients-
in-Slot (CinS) Encoding (NeuJeans) [24], Slot Encoding-MPCNN [32]

4098

CCS ’25, October 13–17, 2025, Taipei, Taiwan Guiming Shi et al.

Table 2: Comparison of the Overhead from Bootstrapping and the Storage Size of the Convolutional Layer. In this table, 𝑀

represents the number of convolution-polynomial combinations in the CNN model. 𝐿𝑝𝑜𝑙𝑦 (𝑖) and 𝐿𝑐𝑜𝑛𝑣 (𝑖) denote the level

consumption of the 𝑖-th polynomial and convolutional layer in convolution-polynomial combination, respectively. 𝐿𝑏𝑜𝑜𝑡 refers

to the level that can be used for computing the convolutional or polynomial layer between two bootstrapping operations.

𝐶 is the number of channels in the input tensor, and 𝑛𝑜𝑢𝑡 is the number of output ciphertexts. 𝐻𝑜𝑢𝑡 and𝑊𝑜𝑢𝑡 represent the

number of height and width of the convolutional layer’s output tensor that fits into ciphertext’s polynomial ring degree 𝑁 . 𝐾

denotes convolutional layer’s kernel size. 𝑙 is ciphertext level, with each level having a size of 𝑁 × 8𝐵 (UINT64). MPCNN and

HyPHEN packing are optimized through advanced techniques such as complex packing [8], CHW [17, 32], and the Reshaping

Layer [48]. These methods double the slot encoding packing length by packing tensors into their real and imaginary part

and refining the overall packing scheme. CinS Encoding is converted to the Slot Encoding for multiplication polynomial

layers, which necessitates bootstrapping for each convolution-polynomial combination. Slot Encoding method allows flexible

management of the assignment of bootstrapping operations between the polynomial and convolutional layers. The storage size

of CinS-NeuJeans is extended from the NeuJeans [24] to support convolutional layers with multi-ciphertext input and output.

Encoding-Packing Method

Bootstrapping Overhead Convolutional Layer

Lower Bound

of Bootstrapping Node

Free Bootstrapping

Management

Storage Size (Byte)

CinS-NeuJeans [24] 𝑀 +∑𝑀−1
𝑖=0 ⌈𝐿𝑝𝑜𝑙𝑦 (𝑖)−𝐿𝑏𝑜𝑜𝑡

𝐿𝑏𝑜𝑜𝑡
⌉ % 𝑛𝑜𝑢𝑡𝐶 × (𝑙 + 1) × 8𝑁

Slot-MPCNN [32]
⌈
∑𝑀−1

𝑖=0 (𝐿𝑝𝑜𝑙𝑦 (𝑖)+𝐿𝑐𝑜𝑛𝑣 (𝑖))−𝐿𝑏𝑜𝑜𝑡
𝐿𝑏𝑜𝑜𝑡

⌉ !
𝐾2 × 𝑛𝑜𝑢𝑡𝐶 × (𝑙 + 1) × 8𝑁

Slot-HyPHEN [26] 1
𝑛𝑜𝑢𝑡

× 𝐾2 × 𝑛𝑜𝑢𝑡𝐶 × (𝑙 + 1) × 8𝑁
Slot-WPC (Ours)

2
𝐻𝑜𝑢𝑡𝑊𝑜𝑢𝑡

× 𝐾2 × 𝑛𝑜𝑢𝑡𝐶 × (𝑙 + 1) × 8𝑁

Table 3: Weight Size and Latency for RNS-CKKS-based CNN

Inference with Slot Encoding-MPCNN [32] on CPU. The acti-

vation and dataset used are Hermite [42] and ImageNet [18].

Details about the CNN model, RNS-CKKS parameters, and

CPU are provided in §7.1. The Boot, Conv+Poly, and Weight

Plaintext Generation latencies represent the time taken for

bootstrapping, the computation of convolutional and poly-

nomial layers, and the generation of weight plaintext.

Model

Size (GB) Latency (s)

CNN

Weight

Weight

Plaintext

Boot

Conv+

Poly

Weight

Plaintext

Generation

ResNet-18 0.04 128 478.5 273.6 890.8

ResNet-50 0.11 306 1114.0 460.9 1678.0

with on-the-fly weight plaintext generation, and Slot Encoding-
HyPHEN [26] with weight plaintext reuse. NeuJeans exploits the
property that encrypted multiplication is equivalent to the convolu-
tion operation on the encoded data, which is leveraged in convolu-
tional layers to reduce the size of weight plaintext and achieve the
state-of-the-art performance. As shown in Tab. 2 (Convolutional
Layer Storage Size), CinS Encoding generally results in a lower
storage size compared to Slot Encoding-MPCNN [32]. However,
the bootstrapping overhead of CinS Encoding is higher due to the
increased number of bootstrapping operations. CinS Encoding does
not support element-wise multiplication. Therefore, each output
ciphertext of the convolution layers must be bootstrapped and
converted into Slot Encoding to perform element-wise polynomial
activation operations. This conversion restricts optimizations in
bootstrapping management [16], as shown in Tab. 2 (Bootstrapping
Overhead). In contrast, Slot Encoding supports all element-wise
operations and can compute convolution and polynomial activation

Table 4: Reasons for Weight Plaintext Expansion in RNS-

CKKS-based Convolutional Layers. The term HoutWout rep-
resents the number of neurons in one channel of the output

tensor. 𝑙 is the level of the weight plaintext. The typical val-

ues are based on the RNS-CKKS-based ResNet-18 [23] model

applied to the ImageNet [18] dataset, using the RNS-CKKS

parameters from MPCNN [32].

Reason Expansion Factor Typical Value

a) Weight Repetition HoutWout 82, 162, 322, 642
b) Bit Expansion 𝑙 + 1 2 to 17

layers within the same scheme. As a result, bootstrapping optimiza-
tions can be applied more freely, reducing computational overhead.
However, generating the weight plaintext on-the-fly—by storing
only the original CNNweights (MPCNN)—incurs significant latency
overhead. As shown in Tab. 3, generating the weight plaintext on-
the-fly increases latency by a factor of 478.5+273.6+890.8

478.5+273.6 = 2.18×
and 1114.0+460.9+1678.0

1114.0+460.9 = 2.07× compared to bootstrapping, convo-
lution, and polynomial layer computations, respectively. On the
other hand, HyPHEN [26] leverages the weight plaintext reuse
method across several ciphertexts in the same convolutional layer
by splitting the height dimension. However, it achieves only a mod-
est compression rate, since the number of ciphertexts is typically
limited [8, 48]. This still results in out-of-memory issues for large
models. Based on this analysis, we observe:

Observation 1. Slot Encoding [8, 26, 32, 48] results in lower boot-
strapping overhead compared to CinS Encoding [24] in RNS-CKKS-
based CNN inference because of the freedom in bootstrapping man-
agement optimizations, but it requires a large storage and memory
size for the weight plaintext.

4099

WPC: Weight Plaintext Compression for CNN Inference based on RNS-CKKS CCS ’25, October 13–17, 2025, Taipei, Taiwan

The weight plaintext expansion in RNS-CKKS-based convolu-
tion layers using Slot Encoding arises from two factors: Weight
Repetition and Bit Expansion, as introduced in §2.3.2 and illustrated
in Fig. 5. Among these, Weight Repetition is the primary cause of
the surge in storage size in the Slot Encoding scheme, as shown in
Tab. 4. The typical values for Weight Repetition in ResNet models
on the ImageNet dataset [18] are 82, 162, 322, 642, which are signifi-
cantly larger than the Bit Expansion factor, which ranges from 2 to
17. Based on this analysis, we make the following observation:

Observation 2. The weight repetition in the message representa-
tion of the weight plaintext in RNS-CKKS-based convolution layers
primarily causes the increase in storage size in Slot Encoding [32, 48].

3.2 Computation-Efficient Compression Method

According to Observation 1, Slot Encoding has the computational
advantage of supporting element-wise multiplication operations,
which are crucial for CNN inference. However, it suffers from a
significant increase inweight size due to weight plaintext expansion.
As stated in Observation 2, the primary cause of weight plaintext
expansion is weight repetition. This expansion negatively affects the
performance of RNS-CKKS-based CNN inference on hardware with
limited memory capacity, leading to increased storage and memory
requirements or higher inference latency due to online weight
plaintext generation. Therefore, this work focuses on handling
weight repetition and compressing the weight plaintext in RNS-
CKKS-based convolution layers using Slot Encoding [32, 48] to
reduce storage size and improve inference performance.

As introduced in §2.1.2, the data in the message representation of
the weight plaintext is converted into the evaluation representation
for homomorphic operations through the IDFT and NTT operations
during the Slot Encoding and NWNTT processes. These opera-

tions leverage the Periodic and Discrete Conversion Property

of DFT [7, 47] (Lemma 1), which can be used for compression

if the input data exhibits periodic patterns or discrete values

at fixed intervals. This enables the compression of the weight
plaintext in RNS-CKKS-based convolution layers, as the current
message representation contains redundant information due to
weight repetition. However, the current message representation of
the weight plaintext does not fully satisfy the compressed pattern
of the Periodic and Discrete Conversion Property. Compressing
the repeated weights in the message representation of the weight
plaintext presents the following challenges:
• Theoretical Proof of Compression Pattern: How can we
theoretically demonstrate which data patterns in the message rep-
resentation can be compressed through the conversion process
from the message representation to the evaluation representation
in the RNS-CKKS Slot Encoding scheme? §5 details the solution.
• Practical Implementation of Compression: How can we im-
plement the identified compression patterns in the message rep-
resentation of the weight plaintext in RNS-CKKS-based CNN in-
ference models to reduce the storage size and improve inference
performance? This is solved in §6.

In the following sections, we introduce the Weight Plaintext
Compression (WPC) to address these challenges to reduce the size
of the weight plaintext in RNS-CKKS-based CNN inference.

4 Overview

WPC enables computational efficiency through flexible bootstrap-
ping management and storage size reduction by leveraging the
properties of DFT, as shown in Tab. 2 (Slot-WPC). The storage size
of the weight plaintext for WPC is given by:

of weight plaintext × Storage Size of each weight plaintext

= 𝑛𝑜𝑢𝑡2𝐾2𝐶 × (𝑙 + 1) × 8𝑁
𝐻𝑜𝑢𝑡𝑊𝑜𝑢𝑡

=
2

𝐻𝑜𝑢𝑡𝑊𝑜𝑢𝑡
× 𝑆𝑡𝑜𝑟𝑎𝑔𝑒MPCNN [32]

(6)
where # of weight plaintext and Storage Size of each weight plaintext
are defined in Eq. 7 and Eq. 8, respectively. Compared to Slot En-
coding with the state-of-the-art packing scheme [32], our method
achieves a weight plaintext compression rate of 𝐻𝑜𝑢𝑡𝑊𝑜𝑢𝑡

2 , where
𝐻𝑜𝑢𝑡 and𝑊𝑜𝑢𝑡 are the height and width of the output tensor in the
output ciphertexts, respectively.

4.1 Optimization Flow of WPC

WPC focuses on compressing the weight plaintext in RNS-CKKS-
based CNN inference to reduce memory footprint. As discussed
in §3.2, the weight repetition in the message representation of the
weight plaintext, combined with the Periodic and Discrete Con-
version Property of the DFT [7, 47], enables the compression of
the weight plaintext. First, we introduce and formally prove the
Periodic Transmit Theorem in §5, which demonstrates that the
periodicity in the message representation of the weight plaintext
can be preserved and transmitted to the evaluation representation
within the RNS-CKKS Slot Encoding scheme and NWNTT. This
preserves the possibility for compression in the evaluation repre-
sentation. Second, based on this theorem, we design the Channel
Innermost Packing Scheme (CIPS) in §6, incorporating the opti-
mization technique of Rotation Padding. The key idea is to pack
original repeated weights in the weight plaintext into the periodic
pattern by repacking the original inner dimension into the outer
dimension of the weight plaintext. Through this repacking, the
original repeated weights are packed into a constant interval and
the final weight-plaintext has a periodic structure. Through the
CIPS and Rotation Padding techniques, the evaluation represen-
tation of the weight plaintext can be compressed, leveraging the
Periodic Transmit Theorem, addressing the expansion factor of
weight repetition shown in Tab. 4 and Eq. 5 (𝐻𝑜𝑢𝑡𝑊𝑜𝑢𝑡), and achiev-
ing a significantly reduced storage size. This enables the storage
of all weight plaintext in memory and eliminates the need for the
computationally expensive online weight plaintext generation.

5 Theoretical Proof of Compression Pattern

As analyzed in §3.1, the expansion of weight repetition in the eval-
uation representation of the weight plaintext is the primary cause
of the surge in storage size, which in turn increases the inference
latency or memory footprint. In this section, we analyze the con-
version process (Slot Encoding scheme and NWNTT operation,
introduced in §2.1.2) between different representations in the RNS-
CKKS [13, 14] plaintext and propose that the periodic data pat-

tern in the message representation of the weight plaintext

can be transmitted to the evaluation representation, enabling

4100

CCS ’25, October 13–17, 2025, Taipei, Taiwan Guiming Shi et al.

Figure 6: Slot Encoding and NWNTT Process of Periodic Data

with a Length of 8 and a Period of 2 in the RNS-CKKS Scheme.

When the message representation of the plaintext contains

periodic datawith a period of 2, the corresponding evaluation

representation, after applying Slot Encoding and NWNTT,

results in periodic data with a period of 4.

storage size reduction. This compression opportunity is a key find-
ing of this work and supports the weight plaintext compression for
the RNS-CKKS-based CNN inference discussed in §6.

5.1 Periodic Transmit

DFT-based Conversion Process in RNS-CKKS from Message

to Evaluation Representation: The Slot Encoding process in the
RNS-CKKS scheme transforms the data in the message representa-
tion into the coefficient representation using the IDFT operation
(Eq. 2). The NTT operation (Eq. 3) then converts the coefficient
representation into the evaluation representation, which is the fi-
nal form of the plaintext used for homomorphic operations. Both
the IDFT and NTT operations exhibit the periodic and discrete
conversion property (Lemma 1). Periodic data in the message rep-
resentation is transformed into discrete values in the coefficient
representation, and then these discrete values are converted into
periodic data in the evaluation representation, which can be com-
pressed. By leveraging this lemma, we derive the following theorem:

Theorem 1. Periodic Transmit: In the Slot Encoding and NWNTT
process of RNS-CKKS, if the plaintext data in the message representa-
tion is periodic with length 𝑛 and period 𝑇 , then the corresponding
plaintext data in the evaluation representation will retain periodicity
with length 2𝑛 and period 2𝑇 .

We use a toy example in Fig. 6 to illustrate the Slot Encoding
process, showing how periodic data is transferred from the mes-
sage representation to the coefficient representation, and how the
NWNTT process further transforms the data into the evaluation
representation. This example helps validate the theorem.

Proof. Let the data be a sequence of length 𝑛 with a period of
𝑇 . The following steps outline how the periodic data is processed
through the Slot Encoding and NWNTT operations: 1○ IDFT: Trans-
forms the periodic data in the message representation into discrete

Figure 7: Offline Compression, Online Decompression, and

Polynomial Operations on the Periodic Transmit Plaintext

with Ring Degree 𝑁 = 16 and Level 𝑙 = 1.

values at integer multiples of 𝑛/𝑇 , as defined in Lemma 1. 2○Multi-
ply Scale Factor: Maintains the discrete values at integer multiples
of 𝑛/𝑇 . 3○ Split the Real and Imaginary Part: Further transforms the
discrete values into the discrete values at integer multiples of 2𝑛/2𝑇
in the coefficient representation. The length of the data is doubled.
4○Multiply scalar for Negative Wrapper Convolution: Maintains
the discrete values at integer multiples of 2𝑛/2𝑇 . 5○ NTT: Converts
the discrete values into periodic data with a period of 2𝑛

2𝑛/2𝑇 = 2𝑇 in
the evaluation representation, as described in Lemma 1. The length
of the final result is 2𝑛, and the period is 2𝑇 . □

Remark 1. Benefit of Periodic Transmit: Theorem 1 shows that a
periodic pattern exists in the evaluation representation of the RNS-
CKKS plaintext if the data in the message representation is periodic.
Thus, for each polynomial of the plaintext, the weight repetation ex-
pansion ratio of the data in the evaluation representation is reduced
to a factor of 2𝑇

𝑇
× = 2×, instead of 2𝑛

𝑇
×, assuming the data is purely

periodic, where 𝑛 is the slot number of the plaintext data in the mes-
sage representation, 2𝑛 = 𝑁 is the polynomial ring degree, and 𝑇 is
the period of the data in message representation. Specifically, if the
message representation contains complex data, there is no expansion
in the evaluation representation. This significant reduction in data
expansion helps mitigate the storage size surge.

5.2 Compression and Decompression

The plaintext of Periodic Transmit in the evaluation representation
exhibits a periodic structure, which enables the compression process
to store only a single period of the data. During decompression, the
compressed plaintext is read and replicated 𝑁

2𝑇 times to reconstruct
its full evaluation representation, where 𝑁 and 2𝑇 denotes the
polynomial ring degree and period of the data in the evaluation
representation.

Figure 7 illustrates an example of the compression and decom-
pression process with a polynomial ring degree of 𝑁 = 16 and level
𝑙 = 1. The message (message representation) and plaintext polyno-
mials (evaluation representation) exhibit periodicities of 2 and 4,
respectively. This results in a compression rate of 4 for the plaintext.

4101

WPC: Weight Plaintext Compression for CNN Inference based on RNS-CKKS CCS ’25, October 13–17, 2025, Taipei, Taiwan

The following describes the Periodic Transmit (PT) compression
and decompression with polynomial operations:

PT-Compression:Themessage is first encoded and transformed
into the evaluation representation using Slot Encoding andNWNTT,
respectively. This step converts a period-2 structure in the message
representation into a period-4 structure in the evaluation represen-
tation, as shown in Fig. 7 1○. The evaluation representation of the
plaintext consists of 𝑙 + 1 = 2 polynomials. Next, compression is
applied by retaining only one period of data for each polynomial,
as shown in Fig. 7 2○. The resulting compressed data occupies 4×
less memory than the full evaluation representation.

PT-Decompression: In the online phase, the compressed plain-
text is decompressed by copying the stored period four times for
each polynomial, thereby reconstructing the complete evaluation
representation, as illustrated in Fig. 7 3○.

Polynomial Operations: Subsequent polynomial operations,
such as element-wise multiplication and addition, are executed
directly on the decompressed evaluation representation in conjunc-
tion with the ciphertext polynomials, as depicted in Fig. 7 4○.

Remark 2. Decompression Pattern and Polynomial Indexing: Dif-
ferent RNS-CKKS libraries may use different polynomial indexing
schemes and lead to different decompression patterns. Figure 7 illus-
trates only the case of the standard (vanilla) indexing scheme, where
coefficients are ordered as 0, 1, 2, . . . , 𝑁 −1. For other indexing schemes,
the decompression ratio remains the same, but the decompression pat-
tern must be adjusted to account for differences in indexing.

6 Practical Implementation of Compression

Theorem 1, Periodic Transmit, shows that plaintext with a periodic
message representation can be compressed in its evaluation repre-
sentation. However, this cannot be directly applied to the weight
plaintext in the RNS-CKKS-based CNN inference model due to the
non-periodic structure of its message representation. As shown in
Fig. 4, the message representation of the weight plaintext in the
CHW packing scheme [17] (introduced in §2.3) exhibits repetition
in certain slot positions other than periodic data (e.g., Fig. 4 slot 0
to 3 of ptw[0,0,0,0,0] and ptw[0,0,1,0,0]).

In this section, we propose theChannel Innermost Packing Scheme
(CIPS) and Rotation Padding to compress the weight plaintext in the
RNS-CKKS-based CNN model. These techniques make the message
representation of the weight plaintext periodic, enabling the use
of the Periodic Transmit Theorem. CIPS generates periodic data in
the message representation of the weight plaintext by exploiting
the weight-sharing property (introduced in §2.2.2). In the CHW
packing scheme [17], the height and width dimensions of the tensor
are packed into the innermost dimension of the input and output
ciphertexts. This arrangement leads to the weight repetition of
the weight plaintext, as the same weight is shared across different
neurons within the same channel, as illustrated in Fig. 4. To leverage
both Periodic Transmit Theorem and the weight-sharing property,
we propose the CIPS: CIPS packs the channel dimension into the
innermost dimension and the height and width dimensions into the
outermost dimension in the message representation of the ciphertext.
Using CIPS, part of theweight plaintext consists of periodic data.We
further propose the Rotation Padding to make the weight plaintext

Algorithm 1 Channel Innermost Packing Scheme (CIPS)
ct[i] [j] denotes the j-th slot in the ciphertext ct[i].
Notations are defined in Tab. 1.
Input Tensor 𝐴 ∈ RCA×HA×WA and packing length n.
Output Ciphertext ct with pack parameters H,W, C.
1: Set all slot in the ciphertext ct to zero.
2: H = 2⌈log

HA
2 ⌉ , W = 2⌈log

WA
2 ⌉ , C = n

HW
3: for i ∈ [0 . . ⌈CA

C ⌉) do
4: for j ∈ [0 . . n) do
5: c = j mod C
6: w = ⌊ j

C ⌋ mod W, h = ⌊ j
WC ⌋ mod H

7: if h < HA and w < WA and c + iC < CA then

8: ct[i] [j] = 𝐴[c + iC, h,w]

Figure 8: Packing the Output Tensor𝑦 ∈ R2×2×2
in the Output

Ciphertext cty using the CIPS. The neuron is packed from the

ciphertext first slot to the last slot according to 𝑥 ′𝑠 channel,
width, and height dimension.

fully periodic in the message representation by padding adjacent
neurons in the input ciphertext to the input tensor.

6.1 CIPS Packing and Computation Scheme

This subsection first defines the packing and computation scheme
of CIPS, which determines how the weight data is encoded in
the weight plaintext. All data in Fig.8 and Fig.9 represent the en-
coded/encrypted weights and neurons indices in the plaintext and
the ciphertext within the RNS-CKKS scheme.

6.1.1 Pack Neuron Data in Ciphertext Slot using CIPS. Algorithm 1
shows the packing algorithm of the CIPS. For the tensor 𝐴 ∈
RCA×HA×WA and the packing length 𝑛, Alg. 1 shows the case that
one channel of the tensor (HAWA neurons) can be packed into the
𝑛 slot of the ciphertext for simplicity. line 2: First, the height and
width dimensions are aligned to the power of 2 to calculate the pack
parameters H and W. The number of channels in one ciphertext is
C = 𝑛

HW and the total number of ciphertexts is ⌈CA
C ⌉ . line 3-8: For

each ciphertext, the neuron data is packed into the slot of cipher-
text channel by channel (line 8), where the channel dimension is
packed into the innermost dimension (line 5) and the height and
width dimensions are packed into the outermost dimension (line
6). Figure 8 shows an example that CIPS packs the output tensor
𝑦 ∈ R2×2×2 into the ciphertext with the packing length 𝑛 = 8. The
pack parameters are H = 2, W = 2, and C = 2. The channel di-
mension is packed into the innermost dimension of the ciphertext,
so there are continues neurons in the ciphertext with the same
height and width. For example, the cty[0] in Fig. 8 has the same
height and width for each 2 slots (e.g., slot 0, 1 or slot 2, 3). For
the case that one channel of the tensor can not be packed into one
ciphertext (e.g., only the first layer of the ResNet model [23] on

4102

CCS ’25, October 13–17, 2025, Taipei, Taiwan Guiming Shi et al.

Algorithm 2 CIPS RNS-CKKS-based Convolutional Layer
Notations are defined in Tab. 1 and Alg. 1.
Input Input Ciphertexts ctx with pack parameters H,W, C
Input Weight Plaintext ptw with kernel size KH, KW
Input Padding Parameters PHB, PWB
Input Stride Parameters SH, SW
Output Output Ciphertexts cty
1: Encrypt cty with all zero slots
2: rbase = PHBWC + PWBC
3: for i ∈ [0 . . #ctx) do
4: for kh ∈ [0 . . KH); kw ∈ [0 . . KW) do
5: for c ∈ (−C . . C) do
6: r = khWC + kwC + c − rbase
7: ctr[i, c, kh, kw] = HRot(ctx[i], r)
8: for o ∈ [0 . . #cty) do
9: for i ∈ [0 . . #ctx) do
10: for kh ∈ [0 . . KH); kw ∈ [0 . . KW) do
11: for c ∈ (−C . . C) do
12: ctt = HMul(ctr[i, c, kh, kw], ptw[o, i, c, kh, kw])
13: cty[o] = HAdd(cty[o], ctt)

the ImageNet [18]), CIPS splits the height and width dimensions
into several parts in several ciphertexts. After the down-sample
layer, the packing scheme changes [32], with the channel dimen-
sion inserted between the height and width dimensions. To restore
the CIPS scheme, we apply the reshaping layer proposed by [48]
to transform the output ciphertext of the down-sample layer. This
reshaping layer consumes one level of the ciphertext.

6.1.2 Set RNS-CKKS Computation. Algorithm 2 shows the compu-
tation algorithm of the CIPS convolution layer in the RNS-CKKS
scheme. The input are the input ciphertext ctx, the weight plaintext
ptw, and parameters. line 2-7 : the input ciphertext ctx are rotated
for kernel size (line 4) and input channel (line 5) to generate the ro-
tation ciphertext ctr (line 7). The padding operations may misalign
the input and output ciphertexts, which affects the rotation step
(line 6). The rotation base rbase (line 2) is calculated by the padding
parameters PHB and PWB to handle the alignment of the input ci-
phertext and the output ciphertext. line 8-13: the output ciphertext
cty are computed by multiplication these rotation ciphertext ctr
with the weight plaintext ptw and summation. We can use the baby
step giant step algorithm [12] to reduce the homomorphic rotation
operations HRot. Specifically, the baby step giant step algorithm
decomposes the rotation operation into two parts: the baby step
and the giant step, with the giant step following the multiplication
operation. Figure 9 shows CIPS RNS-CKKS-based convolution layer.
The ciphertext ctx[0] and cty[0] are packed using the CIPS with
the vector length 𝑛 = 8. The input ciphertext ctx[0] is rotated to
generate the rotation ciphertext ctr, which are multiplied with the
weight plaintext ptw to generate the output ciphertext cty[0]. The
total number of weight plaintext for the CIPS is:

of weight plaintext ≈ 𝑛𝑜𝑢𝑡 × 2 × 𝐾2 × 𝐶, (7)

where𝑛𝑜𝑢𝑡 is the number of output ciphertexts (cty),𝐾 is the kernel
size (assumed KH = KW), and 𝐶 is the number of input channels.

Figure 9: CIPS RNS-CKKS Computation of the Convolution

Layer. Part of themessage representation of the weight plain-

text is periodic using zero padding. After applying Rotation

Padding, the weight plaintext becomes fully periodic.

6.1.3 Make Periodic Message Representation Data of Weight Plain-

text. Similar to unencrypted CNN model, the weight data in RNS-
CKKS-based CNNmodel (weight plaintext) is independent of the in-
put data. It is generated in the offline phase and used in the online in-
ference phase. In the RNS-CKKS-based CNNmodel, the positions of
neurons in the rotation ciphertext and output ciphertext determine
the encoded data (Message Representation) in the weight plaintext.
Figure 9 illustrates the Message Representation of the weight plain-
text in the CIPS RNS-CKKS-based convolution layer, which can be
inferred from the rotation ciphertext, output ciphertext, and the
computation. For example, the slot 1 of the weight plaintext filter
ptw[0,0,0,0,0] is multiplied with the slot 1 of the rotation ciphertext
ctr[0,0,0,0] to generate the slot 1 of the output ciphertext cty[0].
The input and output neurons are 𝑥1 = 𝑥 [1, 0, 0] and 𝑦1 = 𝑦 [1, 0, 0].
So the corresponding weight filter is 𝑤6 = 𝑤 [1, 1, 0, 0] according
to the convolution Equation 4.

6.1.4 Leverage Periodic Transmit Theorem. Part of the weight plain-
text before encoding is periodic data with a period of 2 in Fig. 9
(e.g., ptw[0,0,0,0,0], ptw[0,0,1,0,0] and ptw[0,0,-1,0,0]), which can
be used to compress the plaintext in the RNS-CKKS scheme for
the Theorem 1 Periodic Transmit. The weight plaintext is store in
the evaluation representation by keeping only a single copy of the
periodic data. Using the CIPS packing scheme, the storage size of
one weight plaintext is:

Storage Size of each weight plaintext =
(𝑙 + 1) × 8𝑁
𝐻𝑜𝑢𝑡𝑊𝑜𝑢𝑡

, (8)

where 𝐻𝑜𝑢𝑡 and𝑊𝑜𝑢𝑡 are the number of height and width of the
convolutional layer’s output tensor that fits into ciphertext’s poly-
nomial ring degree 𝑁 . 𝑙 is the level of the weight plaintext, with
each level having a storage size of 𝑁 × 8𝐵 (UINT64). Each weight
plaintext is compressed by 𝑛

𝑇
= 𝐻𝑜𝑢𝑡𝑊𝑜𝑢𝑡 times, where 𝑛, 𝑇 , and

4103

WPC: Weight Plaintext Compression for CNN Inference based on RNS-CKKS CCS ’25, October 13–17, 2025, Taipei, Taiwan

Figure 10: Rotation Padding on the Input 𝑥 ∈ R2×2×2
to Gener-

ate the Padded Tensor 𝑥𝑝 ∈ RCin×(PHB+Hin+PHE)×(PWB+Win+PWE)

with PHB = PWB = PWE = 0 and PHE = 1.

𝐻𝑜𝑢𝑡𝑊𝑜𝑢𝑡 are the packing length, the period length, and the height
and width of the output tensor, respectively.

6.2 Rotation Padding for Non-Periodic Plaintext

Part of the weight plaintext is periodic data in the message represen-
tation using the CIPS packing scheme. However, it is challenging
to apply the Periodic Transmit Theorem in the RNS-CKKS-based
CNN inference model to all the weight plaintext due to the non-
periodic data before encoding, as shown in Fig. 9 ptw[0,0,0,1,0],
ptw[0,0,1,1,0] and ptw[0,0,-1,1,0]. The zero value in slot 4-7 of these
weight plaintext blocks the periodic data in the weight plaintext
and makes the weight plaintext non-periodic. In this subsection,
we propose the Rotation Padding to overcome this problem and
achieve the periodic data in all the weight plaintext.

6.2.1 Root Cause of Non-Periodic Weight Plaintext. Part of the
message representation of the weight plaintext consists of non-
periodic data in the RNS-CKKS-based CNN model, which is caused
by 1): The non-power-of-2 height andwidth dimensions of the input
and output tensor; 2): Zero padding and the cyclical rotation (HRot)
in the RNS-CKKS scheme. First, the non-power-of-2 dimensions of
the input and output tensor cause a series of zero-weight data in
the message representation of the weight plaintext for non-packed
slots (which do not satisfy the condition of line 7 in Alg. 1). Second,
the cyclical rotation in the RNS-CKKS scheme shifts the positions
of the zero-padded data with adjacent data in the input ciphertext,
resulting in non-periodic data in the weight plaintext. As shown in
Fig. 9, the weight plaintext values ptw[0,0,0,0,0], ptw[0,0,1,0,0], and
ptw[0,0,-1,0,0] exhibit periodic pattern with a period of 2, while
other values are non-periodic. These non-periodic values in the
plaintext are caused by slots 4-7, which correspond to the output
neurons 𝑦4 = 𝑦 [0, 1, 0], 𝑦5 = 𝑦 [1, 1, 0], 𝑦6 = 𝑦 [0, 1, 1], and 𝑦7 =

𝑦 [1, 1, 1] in the output ciphertext cty[0]. The required input neurons
for these four output neurons are {𝑥4 = 𝑥 [0, 1, 0],𝑥5 = 𝑥 [1, 1, 0]}, {𝑥4,
𝑥5}, {𝑥6 = 𝑥 [0, 1, 1], 𝑥7 = 𝑥 [1, 1, 1]}, and {𝑥6, 𝑥7}, with zero padding.
If zero padding exists in slots 4-7 of the rotation ciphertext, the
weight plaintext in slots 4-7 can be set to the same values as slots
0-3, thereby making the weight plaintext periodic. However, due
to the cyclical rotation, these slots in the rotation ciphertext are
packed with the first row of the input tensor 𝑥 {𝑥0 = 𝑥 [0, 0, 0],

𝑥1 = 𝑥 [1, 0, 0]}, {𝑥0, 𝑥1}, {𝑥2 = 𝑥 [0, 0, 1], 𝑥3 = 𝑥 [1, 0, 1]}, {𝑥2, 𝑥3},
resulting in the weight plaintext in slots 4-7 being zero, thus making
the weight plaintext non-periodic.

6.2.2 Rotation Padding. We propose the Rotation Padding to make
the weight plaintext periodic in the RNS-CKKS-based CNN model:
First, Rotation Padding expands the height and width dimensions
of the input and output tensor to powers of 2. Second, the adjacent
same-channel neurons in the input ciphertext are padded to the input
tensor. Figure 10 illustrates the second step of Rotation Padding.
The adjacent neurons of 𝑥6 = 𝑥 [0, 1, 1] and 𝑥7 = 𝑥 [1, 1, 1] in the
input ciphertext ctx[0] are 𝑥0 = 𝑥 [0, 0, 0] and 𝑥1 = 𝑥 [1, 0, 0], which
are padded to the end of the input tensor 𝑥 . The same analysis can
be applied to the other neurons and the padded tensor 𝑥𝑝 is shown
in Fig. 10. The needed input neurons of the slot 4-5, 6-7 neurons in
output ciphertext cty[0] in Fig. 9 (𝑦 [:, 1, 0] and𝑦 [:, 1, 1]) are changed
to {𝑥4 = 𝑥 [0, 1, 0], 𝑥5 = 𝑥 [1, 1, 0], 𝑥0 = 𝑥 [0, 0, 0], 𝑥1 = 𝑥 [1, 0, 0]}
and {𝑥6 = 𝑥 [0, 1, 1], 𝑥7 = 𝑥 [1, 1, 1], 𝑥2 = 𝑥 [0, 0, 1], 𝑥3 = 𝑥 [1, 0, 1]}
with Rotation Padding. The slot 4-7 of the weight plaintext can be
set to the same value as the slot 0-3 to make the weight plaintext
periodic data. As shown in Fig. 9, by applying the Rotation Padding
to the input tensor, the weight plaintext are all periodic in the
message representation and can be compressed in the evaluation
representation using PT Compression in §5.2.

7 Evaluation

7.1 Experimental Setup

7.1.1 RNS-CKKS Parameters. The paper uses RNS-CKKS param-
eters with 𝑁 = 216, log𝑄𝑃 = 1531, Δ = 245 and 𝐿𝑏𝑜𝑜𝑡 = 9 for the
implemented baselines, MPCNN and HyPHEN, as well as for WPC.
The RNS-CKKS parameters of NeuJeans are based on the original
paper [24]. These parameters satisfy a security level of 𝜆 > 128.

7.1.2 CNN Models, Datasets, and Training Configuration. We eval-
uate the performance of WPC on the ResNet [23] and VGG [49]
models, using the ImageNet and Tiny-ImageNet datasets [18], as
well as the CIFAR dataset [28]. The ResNet architectures—ResNet-
50, ResNet-101, and ResNet-200—use the BasicBlock [23] in stages 1
through 4 with {3, 6, 12, 3}, {3, 12, 30, 3}, and {3, 24, 66, 3} layers, re-
spectively. The VGG architecture increases the number of channels
in the convolutional layers to fully utilize all slots in the RNS-CKKS
scheme, ensuring that the product of each layer’s𝐶𝐻𝑊 is a multiple
of 32768. The ImageNet dataset consists of 1,200,000 training im-
ages, 50,000 validation images, and 1,000 classes. For the encrypted
accuracy evaluation, we randomly select 1,000 validation images
from the ImageNet validation dataset. We modify the CNN models
by replacing the maximum pooling layer [5] with a convolutional
layer. We replace the ReLU activation function with the Degree-2
Hermite polynomial activation function [42] or use the Minimax
polynomial activation function [33] to approximate it (PolyReLU).
The PolyReLU function consumes 14 levels of RNS-CKKS cipher-
text. We train the models using the PyTorch framework [43] on an
NVIDIA A100 GPGPU. The AdamW optimizer [36] is used with a
learning rate of 4e-3 and a weight decay of 5e-2. A batch size of 128
is employed, and the model is trained for 200 epochs. The learning
rate follows a cosine annealing schedule [35]. The fine-tuning is
same as the training procedure, with the learning rate set to 1e-4 to

4104

CCS ’25, October 13–17, 2025, Taipei, Taiwan Guiming Shi et al.

Table 5: Weight Plaintext Size and Inference Latency of Different Convolutional Layers in MPCNN and WPC. The RNS-CKKS-

based convolutional layers are computed at ciphertext level 2. The hardware is the Intel 8480+ CPU. Cout, Cin, K, S, H and W

represent the number of output channels, input channels, kernel size, stride, height and width of the input tensor, respectively.

Layer ID

Layer Parameters Weight Plaintext Size (MB) Latency (s)

Cout Cin K S H, W MPCNN WPC

Compression

Rate

MPCNN WPC

SpeedUp

HRot HMul Other Generate Total HRot HMul Other Total

0 64 3 3 2 256 865.69 5.32 162.72× 1.51 0.75 0.46 9.96 12.68 2.14 1.41 0.86 4.41 2.88×
1 64 64 3 1 64 3456.70 2.62 1319.35× 2.01 1.69 1.02 22.41 27.13 2.94 3.17 1.90 8.01 3.39×
2 128 64 3 2 64 8801.56 293.96 29.94× 2.96 3.38 2.03 44.82 53.19 4.66 8.87 5.33 18.86 2.82×
3 128 64 1 2 64 2656.32 59.82 44.41× 1.10 0.38 0.23 4.98 6.69 1.66 0.99 0.60 3.25 2.06×
4 128 128 3 1 32 3456.70 6.05 571.36× 1.99 1.69 1.01 22.41 27.10 3.43 4.91 2.95 11.29 2.40×
5 256 128 3 2 32 7467.12 580.52 12.86× 2.88 3.38 2.03 44.82 53.11 5.13 11.09 6.65 22.87 2.32×
6 256 128 1 2 32 1321.88 103.33 12.79× 1.01 0.38 0.23 4.98 6.60 1.76 1.23 0.74 3.73 1.77×
7 256 256 3 1 16 3456.70 19.58 176.54× 1.97 1.69 1.01 22.41 27.08 3.68 5.82 3.49 12.99 2.08×
8 512 256 3 2 16 7057.29 1155.81 6.11× 2.87 3.38 2.03 44.82 53.10 5.39 12.28 7.36 25.03 2.12×
9 512 256 1 2 16 912.05 197.08 4.63× 1.00 0.38 0.23 4.98 6.59 1.84 1.36 0.82 4.02 1.64×
10 512 512 3 1 8 6913.40 145.68 47.46× 3.03 3.38 2.03 44.82 53.26 5.91 12.58 7.54 26.03 2.05×

Table 6: Weight Plaintext Compression Comparison of WPC and Baseline Methods.

Model

Dataset

VGG-11 Hermite

CIFAR-100

ResNet-34 Hermite

Tiny-ImageNet

ResNet-101 Hermite

ImageNet

ResNet-200 Hermite

ImageNet

Method MPCNN HyPHEN WPC MPCNN HyPHEN WPC MPCNN HyPHEN WPC MPCNN HyPHEN WPC

Weight Plaintext Size (GB) 23.04 23.04 0.50 204.51 151.6 3.83 576.54 458.1 5.53 1098.99 900.2 7.90

Compression Rate 1.00× 1.00× 46.08× 1.00× 1.35× 53.40× 1.00× 1.26× 104.26× 1.00× 1.22× 139.11×

enhance accuracy. The ResNet architecture modification is neces-
sary for training stability based on our experiments, as arithmetic
replacement causes some of the original model architectures to
diverge during training.

7.1.3 Inference Devices. We evaluate WPC on CPU and GPU de-
vices. The CPU is an Intel Xeon 8480+with 512 GB ofmemory, while
the GPU is an NVIDIA A100 with 80 GB of memory. The RNS-CKKS
library used on CPU and GPU are Lattigo [40] and [19, 21].

7.1.4 Baseline Implementation. We compare three baselines: Slot-
MPCNN [32], Slot-HyPHEN [26], and CinS-NeuJeans [24]. All base-
line CNNmodels use zero-padding. Slot-MPCNN and Slot-HyPHEN
represent state-of-the-art Slot Encoding methods. Slot-HyPHEN
additionally incorporates a plaintext reuse technique. Our imple-
mentation of Slot-MPCNN applies the CHW packing scheme [17],
a Reshaping Layer with two-level consumption [48], and Complex
Packing [8] to reduce the number of output ciphertexts and optimize
packing efficiency. The original HyPHEN scheme [26] achieves a
compression rate of 8 on ResNet-18. We improve HyPHEN’s infer-
ence performance by independently applying the CHW packing
scheme, the Reshaping Layer with two-level consumption, and
Complex Packing. The implemented HyPHEN reduces the weight
plaintext size by splitting convolutional layers into height-wise sub-
tensor convolutions that share the same weight plaintext. These
optimizations limit the number of output ciphertexts, resulting in
a lower compression rate but improved inference efficiency. The
consumed level of the Reshaping Layer in CHW is two, as the re-
shaping operation in the CHW packing scheme incurs higher costs
for a one level reshaping. CinS-NeuJeans represents the state-of-
the-art CinS Encoding [24] and its evaluation data is sourced from
the original publication [24].

7.1.5 WPC Implementation. WPC employs Rotation Padding (§6.2)
as its padding function. It adopts the CIPS packing scheme (§6.1), a

Reshaping Layer with one-level consumption [48], and Complex
Packing [8]. WPC incorporates the Periodic Transmit Compression
method (§5.2) to compress the weight plaintext.

7.2 Results

7.2.1 Microbenchmark Result. Table 5 presents the weight plain-
text size and inference latency of the convolutional layers inMPCNN
and WPC. WPC achieves compression of the weight plaintext by
a factor ranging from 4.63× to 1319.35× across different convolu-
tional layers. The compression rate varies depending on the param-
eters of each convolutional layer, primarily the stride (𝑆), and the
height (𝐻)&width (𝑊) of the input tensors:

• For 𝑆 = 1, 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ∝ 𝐻𝑊 .
• For 𝑆 = 2, 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ∝ 𝐻 .

The height and width of the tensors decrease with increasing
layer ID because of the stride2-convolution, leading to a reduced
compression rate in deeper layers of the CNNmodel. This reduction
occurs because fewer repeated weights are encoded into the weight
plaintext, as the weight-sharing property (§2.2.2) of convolutional
layers spans the height and width dimensions. For instance, the
compression rate for Layer ID 1 (𝐻,𝑊 = 64) is 1319.35×, while for
Layer ID 4 (𝐻,𝑊 = 32), it decreases to 571.36×. The stride parameter
also affects the compression rate. In strided convolution layers
(𝑆 = 2), parts of the encoded data in the weight plaintext become
zero, which increases the periodic length of the weight plaintext and
reduces the compression rate. The zero data is padded between the
height and width dimensions within the weight plaintext, resulting
in larger periodic length. Thus, the compression rate for Layer
ID 7 with 𝑆 = 1 is larger than that for Layer ID 8 with 𝑆 = 2
(𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 = 176.54× vs. 6.11×).

Despite the higher computational overhead in the convolutional
layers, WPC achieves lower inference latency than the Slot-MPCNN

4105

WPC: Weight Plaintext Compression for CNN Inference based on RNS-CKKS CCS ’25, October 13–17, 2025, Taipei, Taiwan

Table 7: Inference Latency Comparison on A100 GPGPU and ImageNet Dataset. The Boot, Conv, Poly, and Weight Plaintext

Generation times represent the latency of bootstrapping, convolutional, polynomial layers, and weight plaintext generation,

respectively. For NeuJeans, the Poly, Conv, and Boot times correspond to the activation, Conv2d, and the sum of all other

components as reported in [24]. MPCNN, HyPHEN, and WPC use the PolyReLU and RNS-CKKS library from [33] and [19, 21].

NeuJeans employs the PolyReLU and RNS-CKKS library from [15] and [1]. HyPHEN uses the first layer with a kernel size of 3

to fit the ResNet-18 on the A100 and encounters an out-of-memory (OoM) issue with larger models.

Inference

Latency (s)

ResNet-18

Hermite

ResNet-18

PolyReLU

ResNet-50

PolyReLU

ResNet-200

Hermite

MPCNN NeuJeans HyPHEN WPC MPCNN NeuJeans HyPHEN WPC MPCNN HyPHEN WPC MPCNN WPC

Boot 1.77 5.02 1.77 1.36 7.84 6.46 7.84 7.59 18.39

OoM

18.14 13.38 13.33

Conv 1.83 0.25 2.17 2.29 1.51 0.21 2.23 2.15 2.62 5.08 8.48 20.39

Poly 0.06 0.08 0.06 0.03 0.51 7.44 0.51 0.49 1.26 1.25 0.52 0.41

Weight Plaintext

Generation

4.35 - - - 4.34 - - - 8.26 - 24.95 -

Total 8.01 5.35 4.00 3.68 14.20 14.11 10.58 10.23 30.53 24.47 47.33 34.04

Speedup 1.00× - 2.00× 2.18× 1.00× - 1.34× 1.39× 1.00× OoM 1.25× 1.00× 1.39×

Table 8: ImageNet Classification Top-1 Accuracy. The plain

accuracy with full validation set and 1,000 randomly selected

validation images is evaluated on the NVIDIA A100 GPU us-

ing the PyTorch framework. The encrypted accuracy with

the same 1,000 randomly selected validation images is evalu-

ated on an Intel 8480+ CPU and the Lattigo library [40].

CNN

Model

Polynomial

Activation

Full Val Set 1,000 Samples Images

Plain

Accuracy (%)

Plain

Accuracy (%)

Encrypt

Accuracy (%)

MPCNN WPC MPCNN WPC MPCNN WPC

ResNet-18

Hermite 69.36 70.38 68.50 70.60 68.50 70.60

PolyReLU 71.42 71.13 71.60 71.30 71.60 71.20

ResNet-50

Hermite 71.19 71.65 71.70 71.80 71.60 71.70

PolyReLU 76.31 77.83 76.50 78.70 76.50 78.70

ResNet-101 Hermite 71.94 71.89 72.20 71.90 72.20 71.90

ResNet-200 Hermite 74.45 74.57 74.50 74.40 74.50 74.40

baseline because of the elimination of on-the-fly weight plaintext
generation. On one hand, the high computational cost of generating
weight plaintext during inference significantly increases the latency
in Slot-MPCNN, whereas WPC avoids this overhead. On the other
hand, if the baseline MPCNN precomputes the weight plaintext to
reduce latency, it incurs substantial storage and memory overhead
to store the full plaintext representation.

7.2.2 Weight Plaintext Compression Comparison. Table 6 shows
the weight plaintext size and compression rate of WPC compared
to the baseline methods. The baseline MPCNN methods require
between 23.04 GB and 1098.99 GB of weight plaintext, which is
significantly larger than the A100 GPU memory (80 GB) and even
exceeds the CPU memory (512 GB). The HyPHEN method reduces
the weight plaintext size by up to 1.35× compared to the base-
line MPCNN method. The lower compression rate arises because
the implemented HyPHEN shares the weight plaintext across out-
put ciphertexts within the same convolutional layer, whereas the
number of ciphertexts is constrained by CHW [17, 32], Complex
Packing [8], and Reshaping Layer [48] optimizations. For exam-
ple, all the convolutional layers in VGG-11 use a single ciphertext,
meaning the weight plaintext size is not reduced. A significant
portion of the ResNet-101 and ResNet-200 models also includes

layers with only one ciphertext, so the weight plaintext size is not
reduced in these cases. The WPC method achieves a reduction in
weight plaintext size by a factor of 46.08× to 139.11× compared to
the baseline MPCNN method. For larger models, the down-sample
layers occupy a smaller portion of the model, which leads to a
lower compression rate, as discussed in detail in §7.2.1. Thus, for
larger models, the compression rate increases, demonstrating the
effectiveness of the weight plaintext compression of WPC.

7.2.3 CNN Inference Latency Comparison. Table 7 shows the infer-
ence latency of WPC and the baseline methods on the A100 GPGPU.
The Slot Encoding Scheme-MPCNN exhibits lower performance
compared to others, primarily because of the cost associated with
weight plaintext generation. The CinS Encoding scheme of Neu-
Jeans incurs higher computational overhead due to bootstrapping
operation (e.g., ResNet-18 Hermite). This is because CinS Encod-
ing does not support element-wise multiplication, necessitating
bootstrapping to convert the output ciphertext of the convolutional
layers into Slot Encoding for polynomial activation operations. Hy-
PHEN incurs higher convolutional overhead due to support for
weight plaintext reuse. Additionally, HyPHEN encounters an OoM
issue on the ResNet-50 and ResNet-200 models because the limited
weight plaintext compression rate. WPC benefits from the computa-
tional advantages of the Slot Encoding and significantly compresses
the weight plaintext (as detailed in §7.2.2). Thus, WPC achieves the
best performance across all models, despite the increased convolu-
tional layer overhead.

7.2.4 Image Classification Top-1 Accuracy. Table 8 shows the Im-
ageNet classification top-1 accuracy for both WPC and the Slot-
MPCNN baseline. The plain accuracy on the full ImageNet valida-
tion dataset of both the baseline and WPC are similar, indicating
that the modification to the CNN architecture (Rotation Padding)
does not affect the CNN’s accuracy. For the 1,000 randomly se-
lected validation images, part of the encrypted accuracy is lower
than the plain accuracy due to the inference error introduced by
the RNS-CKKS scheme. Specifically, the plain accuracy of Slot-
MPCNN ResNet-50 with Hermite, WPC ResNet-18 with PolyReLU,
and ResNet-50 with Hermite is lower than the corresponding plain
accuracy because of the inference error caused by the RNS-CKKS.

4106

CCS ’25, October 13–17, 2025, Taipei, Taiwan Guiming Shi et al.

8 Discussion

This section presents key insights from our findings, outlines the
limitations of our approach, and suggests directions for future work.

Insights: This paper introduces a new perspective on plaintext
compression that targets the storage size of individual plaintext in
RNS-CKKS. Unlike prior works that reduce the number of plaintext,
WPC leverages the formalized periodicity arising from DFT-like
Slot Encoding and NWNTT to minimize the size of each plaintext.

Limitations and FutureWork: First, this work focuses on RNS-
CKKS-based CNN inference, leaving other types of applications
unexplored (e.g., Transformers [51]). However, as demonstrated in
this paper, the compression opportunity is not exclusive to CNNs.
The Periodic Transmit Theorem (Theorem 1) is a general character-
istic of RNS-CKKS. Therefore, it is potentially applicable to other
neural network architectures. Challenges in this direction include
exploring the periodicity of weight plaintext and designing efficient
packing schemes tailored to different architectures. Second, the
proposed CIPS packing scheme reduces the size of weight plaintext
at the cost of increased computational complexity in convolutional
layers. Developing more efficient packing strategies may help miti-
gate this overhead while preserving the compression benefits.

Extensions to Other FHE Schemes: The Periodic Transmit
Theorem also applies to other FHE schemes, such as BGV [11], al-
though the relationship between the period and the message length
may vary. These schemes typically employ a similar conversion
process that maps the message representation to the evaluation
representation of the plaintext.

9 Conclusion

In this work, we have proposed WPC, an efficient weight plaintext
compression method for RNS-CKKS-based convolutional neural
network inference. By leveraging insights from the transformation
of CNN weights into weight plaintext and exploiting the periodic
nature of the data, we have introduced a compression approach
that minimizes storage and memory overhead while preserving
the accuracy and security of the inference process. We have pre-
sented the Periodic Transmit Theorem in the RNS-CKKS scheme,
which enables the compression of periodic data, and introduced the
Channel Innermost Packing Scheme and Rotation Padding tech-
niques to rearrange weight data into a format that can be efficiently
compressed. Our experimental evaluations demonstrate that WPC
significantly reduces weight plaintext size, achieving compression
ratios of dozens to hundreds, while maintaining or even improv-
ing model performance on standard datasets such as ImageNet,
Tiny-ImageNet, and CIFAR. In summary, WPC provides an effec-
tive solution to the challenges of large memory consumption in
encrypted inference, offering both compression efficiency and com-
putational practicality.

Acknowledgments

This work was supported by the Tsinghua University Dushi Pro-
gram (20251080047).We thankGuang Fan and Yi Chen for providing
the GPGPUs RNS-CKKS library.

References

[1] 2022. HEaaN Library. https://heaan.it/.
[2] 2022. MPCNN. https://github.com/snu-ccl/FHE-MP-CNN.

[3] 2023. AvgPool2d. https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.
html.

[4] 2023. Fully Connected Layer. https://pytorch.org/docs/stable/generated/torch.
nn.Linear.html.

[5] 2023. MaxPool2d. https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.
html.

[6] 2023. ZeroPad2d. https://pytorch.org/docs/stable/generated/torch.nn.ZeroPad2d.
html#torch.nn.ZeroPad2d.

[7] Ramesh C Agarwal and C Sidney Burrus. 1975. Number theoretic transforms to
implement fast digital convolution. Proc. IEEE 63, 4 (1975), 550–560.

[8] Ehud Aharoni, Nir Drucker, Gilad Ezov, Hayim Shaul, and Omri Soceanu. 2022.
Complex Encoded Tile Tensors: Accelerating Encrypted Analytics. IEEE Secur.
Priv. 20, 5 (2022), 35–43. doi:10.1109/MSEC.2022.3181689

[9] Ayoub Benali Amjoud and Mustapha Amrouch. 2023. Object Detection Using
Deep Learning, CNNs and Vision Transformers: A Review. IEEE Access 11 (2023),
35479–35516. doi:10.1109/ACCESS.2023.3266093

[10] Wei Ao and Vishnu Naresh Boddeti. 2024. AutoFHE: Automated Adaption
of CNNs for Efficient Evaluation over FHE. In 33rd USENIX Security Sympo-
sium, USENIX Security 2024, Philadelphia, PA, USA, August 14-16, 2024, Davide
Balzarotti and Wenyuan Xu (Eds.). USENIX Association. https://www.usenix.
org/conference/usenixsecurity24/presentation/ao

[11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2011. Fully Homomor-
phic Encryption without Bootstrapping. Electron. Colloquium Comput. Complex.
TR11-111 (2011). ECCC:TR11-111 https://eccc.weizmann.ac.il/report/2011/111

[12] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
2018. Bootstrapping for Approximate Homomorphic Encryption. In Advances
in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 -
May 3, 2018 Proceedings, Part I (Lecture Notes in Computer Science, Vol. 10820),
Jesper Buus Nielsen and Vincent Rijmen (Eds.). Springer, 360–384. doi:10.1007/
978-3-319-78381-9_14

[13] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
2018. A Full RNS Variant of Approximate Homomorphic Encryption. In Selected
Areas in Cryptography - SAC 2018 - 25th International Conference, Calgary, AB,
Canada, August 15-17, 2018, Revised Selected Papers (Lecture Notes in Computer
Science, Vol. 11349), Carlos Cid andMichael J. Jacobson Jr. (Eds.). Springer, 347–368.
doi:10.1007/978-3-030-10970-7_16

[14] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. 2017. Homomor-
phic Encryption for Arithmetic of Approximate Numbers. In Advances in Cryptol-
ogy - ASIACRYPT 2017 - 23rd International Conference on the Theory and Applica-
tions of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part I (Lecture Notes in Computer Science, Vol. 10624), Tsuyoshi Takagi
and Thomas Peyrin (Eds.). Springer, 409–437. doi:10.1007/978-3-319-70694-8_15

[15] Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. 2020. Efficient Homomor-
phic Comparison Methods with Optimal Complexity. In Advances in Cryptology -
ASIACRYPT 2020 - 26th International Conference on the Theory and Application of
Cryptology and Information Security, Daejeon, South Korea, December 7-11, 2020,
Proceedings, Part II (Lecture Notes in Computer Science, Vol. 12492), Shiho Moriai
and Huaxiong Wang (Eds.). Springer, 221–256. doi:10.1007/978-3-030-64834-3_8

[16] Seonyoung Cheon, Yongwoo Lee, Dongkwan Kim, Ju Min Lee, Sunchul Jung,
Taekyung Kim, Dongyoon Lee, and Hanjun Kim. 2024. DaCapo: Automatic
Bootstrapping Management for Efficient Fully Homomorphic Encryption. In 33rd
USENIX Security Symposium, USENIX Security 2024, Philadelphia, PA, USA, August
14-16, 2024, Davide Balzarotti and Wenyuan Xu (Eds.). USENIX Association.
https://www.usenix.org/conference/usenixsecurity24/presentation/cheon

[17] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin E. Lauter, Saeed
Maleki, Madanlal Musuvathi, and Todd Mytkowicz. 2019. CHET: an optimizing
compiler for fully-homomorphic neural-network inferencing. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley
and Kathleen Fisher (Eds.). ACM, 142–156. doi:10.1145/3314221.3314628

[18] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Ima-
geNet: A large-scale hierarchical image database. In 2009 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition CVPR 2009, 20-25 June
2009, Miami, Florida, USA. IEEE Computer Society, 248–255. doi:10.1109/CVPR.
2009.5206848

[19] Guang Fan, Mingzhe Zhang, Fangyu Zheng, Shengyu Fan, Tian Zhou, Xiang-
long Deng, Wenxu Tang, Liang Kong, Yixuan Song, and Shoumeng Yan. 2025.
WarpDrive: GPU-Based Fully Homomorphic Encryption Acceleration Leveraging
Tensor and CUDA Cores. In IEEE International Symposium on High Performance
Computer Architecture, HPCA 2025, Las Vegas, NV, USA, March 1-5, 2025. IEEE,
1187–1200. doi:10.1109/HPCA61900.2025.00091

[20] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Homo-
morphic Encryption. IACR Cryptol. ePrint Arch. (2012), 144. http://eprint.iacr.
org/2012/144

[21] Shengyu Fan, Zhiwei Wang, Weizhi Xu, Rui Hou, Dan Meng, and Mingzhe
Zhang. 2023. TensorFHE: Achieving Practical Computation on Encrypted Data
Using GPGPU. In IEEE International Symposium on High-Performance Computer

4107

https://heaan.it/
https://github.com/snu-ccl/FHE-MP-CNN
https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html
https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html
https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html
https://pytorch.org/docs/stable/generated/torch.nn.ZeroPad2d.html#torch.nn.ZeroPad2d
https://pytorch.org/docs/stable/generated/torch.nn.ZeroPad2d.html#torch.nn.ZeroPad2d
https://doi.org/10.1109/MSEC.2022.3181689
https://doi.org/10.1109/ACCESS.2023.3266093
https://www.usenix.org/conference/usenixsecurity24/presentation/ao
https://www.usenix.org/conference/usenixsecurity24/presentation/ao
https://eccc.weizmann.ac.il/report/2011/111
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-030-64834-3_8
https://www.usenix.org/conference/usenixsecurity24/presentation/cheon
https://doi.org/10.1145/3314221.3314628
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/HPCA61900.2025.00091
http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/144

WPC: Weight Plaintext Compression for CNN Inference based on RNS-CKKS CCS ’25, October 13–17, 2025, Taipei, Taiwan

Architecture, HPCA 2023, Montreal, QC, Canada, February 25 - March 1, 2023. IEEE,
922–934. doi:10.1109/HPCA56546.2023.10071017

[22] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, USA, May 31 - June 2, 2009, Michael Mitzenmacher (Ed.). ACM,
169–178. doi:10.1145/1536414.1536440

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE
Computer Society, 770–778. doi:10.1109/CVPR.2016.90

[24] Jae Hyung Ju, Jaiyoung Park, Jongmin Kim, Minsik Kang, Donghwan Kim,
Jung Hee Cheon, and Jung Ho Ahn. 2024. NeuJeans: Private Neural Network
Inference with Joint Optimization of Convolution and FHE Bootstrapping. In
Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2024, Salt Lake City, UT, USA, October 14-18, 2024, Bo Luo,
Xiaojing Liao, Jun Xu, Engin Kirda, and David Lie (Eds.). ACM, 4361–4375.
doi:10.1145/3658644.3690375

[25] Dongwoo Kim and Cyril Guyot. 2023. Optimized Privacy-Preserving CNN Infer-
ence With Fully Homomorphic Encryption. IEEE Trans. Inf. Forensics Secur. 18
(2023), 2175–2187. doi:10.1109/TIFS.2023.3263631

[26] Donghwan Kim, Jaiyoung Park, Jongmin Kim, Sangpyo Kim, and Jung Ho Ahn.
2024. HyPHEN: A Hybrid Packing Method and Its Optimizations for Homo-
morphic Encryption-Based Neural Networks. IEEE Access 12 (2024), 3024–3038.
doi:10.1109/ACCESS.2023.3348170

[27] Miran Kim, Xiaoqian Jiang, Kristin Lauter, Elkhan Ismayilzada, and Shayan
Shams. 2022. Secure human action recognition by encrypted neural network
inference. Nature communications 13, 1 (2022), 4799.

[28] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images.
(2009).

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet
Classification with Deep Convolutional Neural Networks. In Advances in
Neural Information Processing Systems 25: 26th Annual Conference on Neural
Information Processing Systems 2012. Proceedings of a meeting held Decem-
ber 3-6, 2012, Lake Tahoe, Nevada, United States, Peter L. Bartlett, Fernando
C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q. Wein-
berger (Eds.). 1106–1114. https://proceedings.neurips.cc/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.html

[30] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E.
Howard, Wayne E. Hubbard, and Lawrence D. Jackel. 1989. Handwritten
Digit Recognition with a Back-Propagation Network. In Advances in Neu-
ral Information Processing Systems 2, [NIPS Conference, Denver, Colorado, USA,
November 27-30, 1989], David S. Touretzky (Ed.). Morgan Kaufmann, 396–
404. http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-
back-propagation-network

[31] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324. doi:10.1109/5.726791

[32] Eunsang Lee, Joon-Woo Lee, Junghyun Lee, Young-Sik Kim, Yongjune Kim,
Jong-Seon No, and Woosuk Choi. 2022. Low-Complexity Deep Convolutional
Neural Networks on Fully Homomorphic Encryption Using Multiplexed Parallel
Convolutions. In International Conference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA (Proceedings of Machine Learning Research,
Vol. 162), Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang
Niu, and Sivan Sabato (Eds.). PMLR, 12403–12422. https://proceedings.mlr.press/
v162/lee22e.html

[33] Eunsang Lee, Joon-Woo Lee, Jong-Seon No, and Young-Sik Kim. 2022. Minimax
Approximation of Sign Function by Composite Polynomial for Homomorphic
Comparison. IEEE Trans. Dependable Secur. Comput. 19, 6 (2022), 3711–3727.
doi:10.1109/TDSC.2021.3105111

[34] Joon-Woo Lee, Eunsang Lee, Yongwoo Lee, Young-Sik Kim, and Jong-Seon No.
2021. High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption
Using Optimal Minimax Polynomial Approximation and Inverse Sine Function.
In Advances in Cryptology - EUROCRYPT 2021 - 40th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Zagreb, Croa-
tia, October 17-21, 2021, Proceedings, Part I (Lecture Notes in Computer Science,
Vol. 12696), Anne Canteaut and François-Xavier Standaert (Eds.). Springer, 618–
647. doi:10.1007/978-3-030-77870-5_22

[35] Ilya Loshchilov and Frank Hutter. 2017. SGDR: Stochastic Gradient Descent
with Warm Restarts. In 5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net. https://openreview.net/forum?id=Skq89Scxx

[36] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
In 7th International Conference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net. https://openreview.net/forum?
id=Bkg6RiCqY7

[37] Qian Lou and Lei Jiang. 2021. HEMET: A Homomorphic-Encryption-Friendly
Privacy-Preserving Mobile Neural Network Architecture. In Proceedings of the

38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event (Proceedings of Machine Learning Research, Vol. 139), Marina Meila
and Tong Zhang (Eds.). PMLR, 7102–7110. http://proceedings.mlr.press/v139/
lou21a.html

[38] Ahmet Can Mert, Emre Karabulut, Erdinç Öztürk, Erkay Savas, and Aydin Aysu.
2022. An Extensive Study of Flexible Design Methods for the Number Theoretic
Transform. IEEE Trans. Computers 71, 11 (2022), 2829–2843. doi:10.1109/TC.2020.
3017930

[39] Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz,
and Demetri Terzopoulos. 2022. Image Segmentation Using Deep Learning: A
Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 7
(2022), 3523–3542. doi:10.1109/TPAMI.2021.3059968

[40] Christian Vincent Mouchet, Jean-Philippe Bossuat, Juan Ramón Troncoso-
Pastoriza, and Jean-Pierre Hubaux. 2020. Lattigo: A multiparty homomorphic
encryption library in go. In Proceedings of the 8th Workshop on Encrypted Com-
puting and Applied Homomorphic Cryptography. 64–70.

[41] Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Linear Units Improve Re-
stricted Boltzmann Machines. In Proceedings of the 27th International Conference
onMachine Learning (ICML-10), June 21-24, 2010, Haifa, Israel, Johannes Fürnkranz
and Thorsten Joachims (Eds.). Omnipress, 807–814. https://icml.cc/Conferences/
2010/papers/432.pdf

[42] Jaiyoung Park, Michael Jaemin Kim, Wonkyung Jung, and Jung Ho Ahn. 2022.
AESPA: Accuracy Preserving Low-degree Polynomial Activation for Fast Private
Inference. CoRR abs/2201.06699 (2022). arXiv:2201.06699 https://arxiv.org/abs/
2201.06699

[43] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (Eds.). 8024–8035. https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html

[44] Thomas Pöppelmann and Tim Güneysu. 2012. Towards Efficient Arithmetic
for Lattice-Based Cryptography on Reconfigurable Hardware. In Progress in
Cryptology - LATINCRYPT 2012 - 2nd International Conference on Cryptology
and Information Security in Latin America, Santiago, Chile, October 7-10, 2012.
Proceedings (Lecture Notes in Computer Science, Vol. 7533), Alejandro Hevia and
Gregory Neven (Eds.). Springer, 139–158. doi:10.1007/978-3-642-33481-8_8

[45] Luis Bernardo Pulido-Gaytan, Andrei Tchernykh, Jorge M. Cortés-Mendoza,
Mikhail G. Babenko, Gleb I. Radchenko, Arutyun Avetisyan, and Alexander Yu.
Drozdov. 2021. Privacy-preserving neural networks with Homomorphic en-
cryption: Challenges and opportunities. Peer-to-Peer Netw. Appl. 14, 3 (2021),
1666–1691. doi:10.1007/S12083-021-01076-8

[46] Ran Ran, Xinwei Luo, Wei Wang, Tao Liu, Gang Quan, Xiaolin Xu, Caiwen Ding,
and Wujie Wen. 2023. SpENCNN: Orchestrating Encoding and Sparsity for
Fast Homomorphically Encrypted Neural Network Inference. In International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA (Proceedings of Machine Learning Research, Vol. 202), Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (Eds.). PMLR, 28718–28728. https://proceedings.mlr.press/v202/ran23b.
html

[47] Mark Richardson. 1978. Fundamentals of the discrete Fourier transform. Sound
& Vibration Magazine 12 (1978), 40–46.

[48] Lorenzo Rovida and Alberto Leporati. 2024. Encrypted Image Classification with
Low Memory Footprint Using Fully Homomorphic Encryption. Int. J. Neural
Syst. 34, 5 (2024), 2450025:1–2450025:16. doi:10.1142/S0129065724500254

[49] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In 3rd International Conference on Learn-
ing Representations, ICLR 2015, SanDiego, CA, USA,May 7-9, 2015, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1409.1556

[50] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. 2016. Rethinking the Inception Architecture for Computer Vi-
sion. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 2818–2826.
doi:10.1109/CVPR.2016.308

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is
All you Need. In Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (Eds.). 5998–6008. https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

4108

https://doi.org/10.1109/HPCA56546.2023.10071017
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/3658644.3690375
https://doi.org/10.1109/TIFS.2023.3263631
https://doi.org/10.1109/ACCESS.2023.3348170
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network
http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network
https://doi.org/10.1109/5.726791
https://proceedings.mlr.press/v162/lee22e.html
https://proceedings.mlr.press/v162/lee22e.html
https://doi.org/10.1109/TDSC.2021.3105111
https://doi.org/10.1007/978-3-030-77870-5_22
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://proceedings.mlr.press/v139/lou21a.html
http://proceedings.mlr.press/v139/lou21a.html
https://doi.org/10.1109/TC.2020.3017930
https://doi.org/10.1109/TC.2020.3017930
https://doi.org/10.1109/TPAMI.2021.3059968
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
https://arxiv.org/abs/2201.06699
https://arxiv.org/abs/2201.06699
https://arxiv.org/abs/2201.06699
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1007/978-3-642-33481-8_8
https://doi.org/10.1007/S12083-021-01076-8
https://proceedings.mlr.press/v202/ran23b.html
https://proceedings.mlr.press/v202/ran23b.html
https://doi.org/10.1142/S0129065724500254
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2016.308
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

	Abstract
	1 Introduction
	2 Background
	2.1 FHE and RNS-CKKS
	2.2 CNN Model and Weight-Sharing Property
	2.3 RNS-CKKS-based CNN and Weight Plaintext Expansion
	2.4 Threat Model

	3 Motivation
	3.1 Drawback of Weight Plaintext Expansion
	3.2 Computation-Efficient Compression Method

	4 Overview
	4.1 Optimization Flow of WPC

	5 Theoretical Proof of Compression Pattern
	5.1 Periodic Transmit
	5.2 Compression and Decompression

	6 Practical Implementation of Compression
	6.1 CIPS Packing and Computation Scheme
	6.2 Rotation Padding for Non-Periodic Plaintext

	7 Evaluation
	7.1 Experimental Setup
	7.2 Results

	8 Discussion
	9 Conclusion
	References

