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Topological Approach to Automatic Symbolic Macromodel
Generation for Analog Integrated Circuits

GUOYONG SHI, HANBIN HU, and SHUWEN DENG, Shanghai Jiao Tong University

In the field of analog integrated circuit (IC) design, small-signal macromodels play indispensable roles for
developing design insight and sizing reference. However, the subject of automatically generating symbolic
low-order macromodels in human readable circuit form has not been well studied. Traditionally, work has
been published on reducing full-scale symbolic transfer functions to simpler forms but without the guarantee
of interpretability. On the other hand, methodologies developed for interconnect circuits (mainly resistor-
capacitor-inductor (RCL) networks) are not suitable for analog ICs. In this work, a topological reduction
method is introduced that is able to automatically generate interpretable macromodel circuits in symbolic
form; that is, the circuit elements in the compact model maintain analytical relations of the parameters
of the original full circuit. This type of symbolic macromodel has several benefits that other traditional
modeling methods do not offer: First, reusability, namely that designer need not repeatedly generate macro-
models for the same circuit even it is re-sized or re-biased; second, interpretability, namely a designer may
directly identify circuit parameters (in the original circuit) that are closely related to the dominant frequency
characteristics, such as dc gain, gain/phase margins, and dominant poles/zeros. The effectiveness and com-
putational efficiency of the proposed method have been validated by several operational amplifier (opamp)
circuit examples.
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1. INTRODUCTION

In analog integrated circuit (IC) design, macromodeling is indispensable. For example,
shown in Figure 1 is a representative two-stage operational amplifier (opamp) that
contains Miller compensation with nulling resistor (MCNR) [Leung and Mok 2001].
Although there is no optimal design procedure for sizing such a circuit to fulfill all
design objectives, reference procedures suggested by experienced designers do exist
[Palmisano and Palumbo 1995, 1999; Palmisano et al. 2001; Palumbo and Pennisi
2002]. Inspection on the suggested procedures tells us that compact small-signal models
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Fig. 1. Two-stage MCNR opamp.

Fig. 2. Small-signal model for the two-stage MCNR opamp.

preserving the transistor-level circuit configuration (conformal abstraction in stages
with retained compensation structure) are instrumental in helping designers carry out
frequency-domain analysis and derive constraints for device sizing. Shown in Figure 2
is such a reduced-order small-signal model corresponding to the transistor-level circuit
in Figure 1.

The main goal of frequency-domain analysis at the macro level is to derive ap-
proximate expressions on the frequency characteristics, such as dc gain, bandwidth,
gain-bandwidth product (GBW), phase/gain margin, slew rate, and poles/zeros, and
so on [Gray et al. 2009]. Analog designers would like to have these metrics in closed
form, that is, analytical functions of the compact small-signal model parameters. These
expressions then become the fundamental media for the following steps of design, in-
cluding bias current allocation, constraints on gain, and pole/zero placement, which
finally lead to a well-sized circuit for the layout steps.

We call the circuit in Figure 2 a macromodel of the original circuit. Such a macromodel
has multiple uses in design and simulation, as listed below [Leung and Mok 2001]:

(1) It can be used for deriving frequency response characteristics in closed form.
(2) It can be used for studying the structural configuration of an opamp, such as the

function and role of each stage, the effect of frequency compensation, the sources
of noise and distortion, and the cause of slew rate limitation, and so on.

(3) It can be used for studying the advanced imperfections caused by the parasitics or
nonlinearity that may contribute to secondary effects like doublet, mirror pole, and
gate leakage, and so on.
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(4) It can be used to explore alternative opamp topology by adding/pruning certain
sections or modifying the frequency compensation structure.

(5) It can be used for the system-level simulation as a substitute of the transistor-level
circuit.

However, due to the existence of numerous opamp structures, the topology of a
derived compact macromodel must change with the original opamp circuit. For this
reason, constructing macromodels for an arbitrary opamp structure requires both skills
and design insight. Analog IC design is highly knowledge intensive; without good
training, creating a proper small-signal circuit model for an arbitrary opamp structure
is a challenging task for beginners, especially when connections between the model
parameters and the device parameters in the original circuit need to be established.

Therefore, an automation tool that is capable of automatically generating a compact
macromodel given a transistor-level opamp circuit is of great help. This art belongs to
reduced-order modeling in general. However, since analog ICs are nonlinear circuits,
even with small-signal linearization, there is no general methodology in the literature
that can be used to generate reduced order macromodels in the form of interpretable
circuits. There exist several numerical methods that can deal with nonlinear circuits
by generating numerical macromodels, not necessarily in circuit form. However, such
methods are mainly useful for the purpose of accelerating numerical simulation, not
directly useful for analog IC design.

This article is dedicated to a systematic study on the problem of automatic macro-
model generation specifically targeted at analog IC design. We review the related work
in Section 2 and motivate a topological approach to the macromodel generation prob-
lem. The main contribution of this article is the proposal of a systematic topological
method for automatic macromodel generation, whose unique feature consists of apply-
ing binary operations to each small-signal circuit element. We tentatively apply each
of the binary operations to the relevant circuit branches. If one operation results in
a smaller change of the circuit frequency response, then this branch operation is ad-
mitted for a candidate reduction operation. All circuit elements are so evaluated and
scored. Then we select a portion of the circuit branches with the lowest scores to be
operated by their preferred reductive operations. In the end, a reduced-scale compact
circuit will be generated, which is expected to be a useful macromodel. The details are
presented in Section 3. In Section 4, we formalize an automatic reduced-order model
generation algorithm as the main contribution of this work. In Section 5, several rep-
resentative opamp circuits are used to conduct an in-depth validation of the proposed
topological reduction methodology. The validation includes aspects on interpretabil-
ity of the generated models, accuracy loss in frequency response and poles/zeros, and
resilience to sizing change. Finally, this article is concluded in Section 6.

2. RELATED WORK

Macromodeling is an art in many IC design subfields, including analog IC design. Cre-
ating proper macromodels for design reasoning or simulation speedup requires skills
and insight from the model developers. Automatic macromodel generation for the pur-
pose of analog IC design reasoning has hardly been addressed in the literature so far.
Especially when a macromodel is required to preserve the topological feature of the
original circuit (like the main stages and the frequency compensation structures in a
multi-stage opamp), the existing methods for generating numerical/symbolic macro-
models in the literature become less promising. To have an appreciation of the state of
the art, we make a brief review on the published works that are relevant to the current
work.
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Macromodel generation in the domain of analog IC design is mainly to do with
the practice of symbolic circuit analysis [Fernández et al. 1998]. During the decades
of research on symbolic circuit analysis, generating simplified symbolic results is at
the heart of this field. Typically, an exact symbolic expression auto-generated for a
frequency response characteristic is too lengthy to read even for an analog IC contain-
ing only half a dozen transistors. To make such expressions interpretable, extensive
research effort has been devoted to automatically generate simplified symbolic ex-
pressions (see Wambacq et al. [1995], Wambacq et al. [1996], Yu and Sechen [1997],
Wambacq et al. [1998], Fernández et al. [1998], Katzenelson and Unikovski [1999],
Daems et al. [2002], and Tan and Shi [2004], among others). However, hardly any of
the listed publications specifically addressed the problem of automatically generating
macromodels in a designer readable form. Most of the cited works considered the gener-
ation of simplified readable analytical expressions (not circuits!) by dropping a portion
of insignificant terms, and the majority of them used numerical reference strategies to
realize pruning. By numerical reference, it means that the circuit under analysis has
to be sized and biased a priori to have numerical small-signal parameter values, which
are then used to assess the dominance of symbolic terms either during or after sym-
bolic generation. The main limitation of all those symbolic simplification methods is
that the machine-generated expressions, although simplified, might not be fully suited
to a designer’s needs, being either not simple enough or overly simple whereby some
secondary effects have been dropped (but not to designer’s wish).

As relevant work, we should also mention another line of research from the perspec-
tive of model order reduction (MOR). Application of MOR to large-scale linear networks
was highly regarded in the circuit community in the mid-1990s. However, a large subset
of the proposed methods only applies to the interconnected circuit problems, consisting
of only resistor (R), capacitor (C), and inductor (L) elements, even though some of them
also consider circuit topology [Ye et al. 2008; Hao et al. 2013]. Although some other
reduction methods were targeted at nonlinear analog/radio frequency (RF) circuits [Li
and Pileggi 2005; Gu 2011; Liu et al. 2015; Ni et al. 2016]), some of them even con-
sidered circuit variations, and the majority of them employ extensions of the moment
matching methodology by introducing blocked form, quadratic or tensor form, or even
zonotoped form moments of dynamic systems. All such methods must rely on highly
complicated linear algebra for the computation of approximating subspaces. Unfortu-
nately, the key steps involved in these methods are hardly possible (if not impossible)
to be made symbolic, which was already confirmed in the article [Shi et al. 2006].

Analog ICs, even in linearized small-signal form, typically involve dependent sources
like the transconductance gm’s and others due to feedback compensation, in addition to
R and C elements. Such circuits can be described by a modified nodal analysis (MNA)
matrix system, which can then be reduced by a standard MOR algorithm. But this
approach only produces a numerical macromodel. Transforming such an approach into
a symbolic one seems intractable in general [Shi et al. 2006]. Now, as we desire, we
would like to generate reduced circuits in interpretable circuit form, that is, topolog-
ical. It seems that the traditional moment-matching-based methods are incapable of
performing topological reduction. Therefore, we have to seek a novel methodology to
deal with the problem at hand.

In the authors’ opinion, a symbolic analysis tool, as an aid to analog IC designers,
must respect designers’ habit in their daily practice, because the way they design is a
result of long-term training and practice. Analog designers would use a symbolic tool
mainly for verifying or validating their manually derived results and intuition. If a
tool generates unfamiliar analytical expressions without any discernable connection
to circuit-level intuition, then designers would most likely avoid using such a tool. A
potentially promising approach is to consider generating simplified results in reduced
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circuit form, from which simplified symbolic expressions (if needed) can be derived
subsequently. Moreover, the reduced circuits should look familiar to the designers so
they can use them to carry out design reasoning.

With the ideal in mind, finding a technical means for realizing the ideal turns out
to be nontrivial. Efficiency is probably the most outstanding concern. An evolutionary
search strategy might be a candidate, but due to its stochastic nature, the produced
macromodels might be overly dependent on the tuning details of the search engine. The
preliminary idea of using a symbolic tool to generate a topological macromodel auto-
matically was attempted in the conference article [Hu et al. 2015]. The main purpose of
this work is to fully articulate the methodology and explore its potential systematically.
We shall report more consolidating experimental results as the validating evidence of
the new methodology. We are going to upgrade the macromodel generation method in
the following aspects: (1) We fully present the philosophy of topological reduction in a
pedagogical way so this methodology can be comprehended easily; (2) we present more
in-depth technical details so the mysterious implementation can be better elucidated;
(3) we present more convincing validations by providing greater details on circuits with
advanced topologies and the model resilience to device size turning, and (4) we also
validate the pole-zero property on the reduced circuit models. Most of the presented
materials in this work were not available in Hu et al. [2015]. In the next section, the
motivational circuit reduction mechanism is presented.

3. BINARY OPERATIONS FOR TOPOLOGICAL REDUCTION

In this work, we introduce a systematic topological network reduction method, which
is based on a symbolic construction procedure by applying a sequence of binary oper-
ations to the circuit branches. The underlying symbolic construction method is called
graph-pair decision diagram (GPDD) [Shi 2013], which treats a linear network as a
pair of graphs. The circuit branches, that is, the graph edges, are classified and associ-
ated to each other by the symbols (representing the circuit elements). Given an order
of the symbols, the graph edges are successively reduced following two deterministic
operations (to be explained later). During the course of reduction, any reduced graph
pairs that can be shared are identified and shared by a hash mechanism in implemen-
tation. Therefore, the GPDD method is so far one of the most efficient non-algebraic
symbolic analysis methods. Since this method directly deals with the circuit topology
while it structurally manages the whole circuit reduction process with the help of a
GPDD data structure, GPDD naturally becomes a promising candidate for topological
macromodel generation.

3.1. Motivational Example

We use a simple circuit to explain the key differences between algebraic reduction and
topological reduction. Consider the resistor-capacitor (RC) circuit shown in Figure 3.
The transfer function (TF) from the input current source to the output voltage is

H(s) = R1(1 + R2C2s)
1 + (R1C1 + R1C2 + R2C2)s + R1 R2C1C2s2 . (1)

Choose an arbitrary circuit element, say, R2. Let us consider two ways of simplifying
the circuit by removing R2. Letting R2 = 0 (i.e., the R2 branch is shorted in the circuit),
we get from the transfer function (1) that

H(s)
∣∣
R2=0 = R1

1 + R1(C1 + C2)s
. (2)
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Fig. 3. Simple RC circuit used to illustrate topological reduction.

Then letting R2 = ∞ (i.e., the R2 branch is open in the circuit), we get from the transfer
function (1) that

H(s)
∣∣
R2=∞ = R1

1 + R1C1s
. (3)

Both Equations (2) and (3) are simplification results of the full expression (1) by elimi-
nating R2. We conclude that, in general, there exist two ways of eliminating a symbol
(parameter) from an expression (or a circuit).

We observe that the above simplification method requires a known symbolic expres-
sion to begin with. In the literature, there are numerous methods for deriving symbolic
transfer functions for linear circuit networks. However, not all of them are suitable for
implementing both of the algebraic operations as we just performed. Typically, setting
a symbol to zero within a symbolic expression is much easier than setting a symbol to
infinity. The latter operation is a limiting operation, which in general would require
an overall manipulation of all symbolic terms. Be aware that in most practical appli-
cations, a symbolic tool has to deal with a huge number of symbolic product terms.
Without an inherently efficient data structure construction, even sorting a large set of
terms would take a significant amount of computation time and resource. Due to this
difficulty, almost all of the existing symbolic simplification methods took the approach
of term elimination, which is roughly equivalent to setting certain symbols to zero. Such
operations are much easier to implement given known numerical parameter values.

In circuit theory, we know that setting a linear circuit element to infinity is equivalent
to replacing the element by a nullor [Carlin 1964] ( just think about an ideal voltage
amplifier). As pointed out in Sánchez-López et al. [2011], a network containing nullor
or other pathological elements (e.g., current mirror or voltage mirror) can be analyzed
using a compact nodal analysis–(NA) based symbolic formulation. However, if we do
not know at the beginning whether certain elements should be replaced by nullor or
not, then later action on taking limit would become very costly to implement using the
method proposed in Sánchez-López et al. [2011]. The key reason is that the NA-based
method is not topological.

3.2. A Conceptual Review on GPDD

As a matter of fact, from a theoretical perspective, setting an element value to 0 or ∞
is a dual operation. This is self-evident because both values can be limiting points if we
recognize that any symbol can appear either in its original form or in its reciprocal form
in a symbolic expression. Therefore, we are confident that a symbolic analysis method
must result that can deal with the both limiting operations with equal complexity. To
the authors’ knowledge, the GPDD algorithm [Shi 2013] is the only existing method
that can realize such a dual symbolic construction.
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The majority of symbolic methods investigated in the literature use an algebraic
formulation, which with little exception adopt the MNA formulation first proposed in
Ho et al. [1975]. The famous interactive symbolic analysis of analog circuits (ISSAC)
[Gielen et al. 1989, 1990] and determinant decision diagram (DDD) [Shi and Tan 2000]
belong to this category. Others following the signal-flow graph (SFG) approach [Lin
and Alderson 1973; Daems et al. 2002; Huang et al. 2003] are still algebraic because
SFG is an incarnation of an algebraic system. Such formulations have the drawback
that singular elements (e.g., nullor) have to be treated in a particular way that differs
from a regular element. In the parlance of matrix operation, a nullor is dealt with by
row-column collapsing [Vlach and Singhal 1994]. After a matrix/determinant has been
expanded like in ISSAC or DDD, subsequent row-column collapse cannot be applied
anymore. Although term sorting is possible based on a data structure like DDD, extra
cost is inevitable. With GPDD, all the potentially cumbersome steps can be avoided
completely because GPDD inherently treats each symbol as two extremal values (0
and ∞) during each step of its construction. This philosophical perspective is the result
of new interpretation on the edge operations introduced with GPDD in Shi [2013].

GPDD is the result of reformulation and extension of the classical topological cir-
cuit analysis method called the 2-graph method (see Mayeda [1972]). The original
algorithm was a pure enumeration method and hence not suitable for solving mildly
large circuits. Moreover, the rules were restricted to gm (transconductance) and other
resistive/conductive elements, not including the E-, F-, and H-type elements in the sim-
ulation program with integrated circuit emphasis (SPICE) netlist syntax. In the GPDD
work [Shi 2013], these limitations were lifted, and the most significant contribution was
to transform explicit enumeration into implicit enumeration by applying the powerful
binary decision diagram (BDD) technology [Bryant 1986]. With implicit enumeration
(i.e., the sharing mechanism), much larger analog circuits can now be solved symboli-
cally by GPDD. Most complementary metal-oxide semiconductor (CMOS) operational
amplifier circuits being designed in practice are included in this category.

The process of GPDD construction is essentially an edge decision process or, equiva-
lently, a symbol decision process. At each construction step, we generate a new pair of
collapsed graphs by assuming that the current symbol either takes “0” or “∞.” Specific
rules map such decisions to the edge operation in the sense of “including” or “excluding”
certain graph edges. When operating on one graph edge or a pair of edges, it could be
either removal of edge(s) or collapse of edge(s), depending on which of the extremal
values the symbol takes.

Shown in Table I are circuit representations of the five types of generic circuit ele-
ments that are sufficient for small-signal analysis of all analog ICs. The Y element is
a representative of R, C, and L that are one-port elements. (In GPDD, all resistive and
impedance elements like R and L are treated in their reciprocals, that is, in admittance
form.) A theoretical justification of the branch patterns for each type of element can
be found in Shi [2013]. What is listed in Table I is an alternative interpretation of the
graph reduction rules developed there. We note that for the dependent source elements
the branch operations corresponding to the 0 value differ slightly. On the other hand,
for the value ∞, the replacement by a nullor is simply equivalent to collapsing the
corresponding branches for the reduction operation.

Interpreting the GPDD construction rules graphically, this process is nothing else
than successively condensing the whole circuit network down to a trivial single element
circuit or an invalid (disconnected) circuit by a sequence of branch operations. On top
of that, if we superimpose certain control on the reduction process by adopting those
“removal” operations that lead to most negligible change of frequency response, then
the macromodel we obtain at the end of the reduction process would be a good approx-
imation of the original circuit. We shall return to the detailed reduction strategy later.
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Table I. Circuit Representations of Extremal Symbol Values for
Generic Y, E, F, G, and H Elements

In summary, we have made it clear that circuit reduction essentially can be re-
alized by two extremal branch operations on each of its elements: 0-operation and
∞-operation. While the 0-operation can be implemented in most traditional sym-
bolic methods, implementing the ∞-operation is not necessarily as straightforward.
In contrast, with the topological GPDD algorithm, implementing both 0-operation and
∞-operation is of equal complexity without incurring any extra cost. Hence, GPDD
becomes our first choice for realizing automatic topological macromodel generation.

3.3. GPDD-Based Reduction

We continue on our working example, the circuit in Figure 3, this time by creating its
GPDD. GPDD is a self-contained circuit analysis method that deals with the input-
output (I/O) relation as a circuit element as well. When the input is a current source
and the output is a voltage measurement, this I/O relation is treated in GPDD as a
voltage-controlled current source, that is, the H-element in the SPICE netlist syntax.
We assign X to be the I/O symbol. Note that the I/O transfer function H is related to X
by H = 1/X.

In GPDD, all impedance elements are treated as immittance. In this sense, we
alternatively use Gk = 1/Rk to denote a resistance. GPDD also automatically lumps
parallel elements to reduce the computation. In this example, we see that R1 and C1
are parallel. In GPDD, they are processed by a lumped immittance Y1 := G1 + sC1 =
(1 + R1C1s)/R1. All GPDD symbols (or literals) are ordered. For example, the order
X < C2 < G2 < Y1 is used in the GPDD constructed in Figure 4. Here the relation “<”
indicates the symbol precedence.

From the top down, each GPDD vertex has two arrows pointing downward, one solid
and one dashed, representing the binary decisions. There are several interpretations on
the decisions. In our current context, it is better suited to interpret the “solid” arrow as
the decision symbol taking the value ∞ and the “dashed” arrow as the decision symbol
taking the value 0. So, in the rest of the article, we shall interchangeably say that
a solid arrow does the ∞-operation and a dashed arrow the 0-operation. This can be
easily justified as equivalent to the “include” and “exclude” operations in the original
GPDD work [Shi 2013].
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Fig. 4. GPDD created for the circuit in Figure 3 with the symbol order X < C2 < G2 < Y1.

The GPDD arrows are attached with signs. For example, the solid arrow going out
from “X” at the root in Figure 4 has a minus sign. All other arrows not attached with a
sign are all positively signed. Readers interested in the detailed construction procedure
of GPDD should consult Shi [2013] or Shi et al. [2014]. After a GPDD is constructed,
reading out the product terms is straightforward. We follow the paths from the root
vertex to the terminal vertex “1” (called the 1-paths). Symbols issuing solid arrows
should be included in the terms. When leaving a vertex by a dashed arrow, the current
decision symbol is excluded, but the sign of that dashed arrow has to be incorporated
for addition or subtraction. Multiplying all the signs seen along a 1-path (terminating
at the vertex 1) gives the final term sign.

Since GPDD is a shared binary data structure, it is compact and removes all repeated
subexpressions. Hence, all identical subexpressions are constructed only once in a
canonical GPDD. Although construction of GPDD for some large analog circuits might
take several minutes or more, post-processing on such a data structure is extremely
efficient. For example, if we would like to do symbolic generation by assuming that G2
is infinity, then we have to go by the solid arrows only in GPDD when we arrive at that
symbol during the path traversal toward the terminal “1.” Since letting a symbol take
infinity is a limiting operation, we infer that those 1-paths not involving G2 can be
ignored completely. Whether or not a 1-path goes through vertex G2 can be checked by
the symbol indexes (which are assigned during the GPDD construction). For instance,
the 1-path in Figure 4, X-C2-1, does not contain G2, and therefore this path can be
dropped during the evaluation of the ∞-operation.

As far as implementation in concerned, the implementation of an ∞-operation in
GPDD is very easy. We traverse the path downward. When arriving a vertex C2, we
check whether its solid arrow points to another vertex whose symbol is ordered behind
G2; if yes, then we just terminate the solid arrow of C2 at “0,” indicating that all the sub-
paths from this arrow are disabled. Note that GPDD vertices whose solid arrows point
at “0” can be eliminated by an operation called zero-suppression [Shi 2013]. This is just
an operation of redirecting the incoming arrow of C2 to the dashed-pointer-connected
child vertex of C2. Of course, we have to combine the signs on the relevant arrows.

The ∞-operation on GPDD, though easy, has several useful applications. It can be
applied to sensitivity analysis (already studied in Shi and Meng [2009]) and topological
reduction in this work. We use two more figures to illustrate the detailed manipulation
in GPDD. Figure 5(a) shows that when G2 is designated an infinity-element, those
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Fig. 5. Reduced GPDD after setting G2 = ∞. (a) Step 1: Paths not containing G2 are removed. (b) Step 2:
Vertexes G2 are removed.

Fig. 6. Reduced GPDD after setting G2 = 0.

1-paths not involving G2 have been removed (here only one such path). At the next
step, we may further remove the G2 vertexes by redirecting the incoming pointers
arriving at the G2 vertexes to the solid-arrow-connected child vertexes of G2 (because
G2 = ∞). The dashed pointers out-going from the G2 vertexes become invalid (thus
removed). The resulting GPDD is the one shown in Figure 5(b). From this simplified
GPDD, we may read out the symbolic transfer function from the sum-of-product (SOP)
expression −X + C2s + Y1 = 0, that is,

H|G2=∞ = 1
X

= 1
C2s + Y1

= R1

1 + R1(C1 + C2)s
, (4)

which is identical to Equation (2), because G2 = 1/R2.
Evaluating a GPDD with a symbol being zero, say, G2 = 0 is much easier to com-

prehend. Figure 6 shows the reduced GPDD after setting G2 = 0. Once again, we may
read the transfer function from the reduced GPDD as follows:

H|G2=∞ = 1
X

= C2s
C2sY1

= R1

1 + R1C1s
, (5)

which is identical to Equation (3).
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Fig. 7. MOSFET small-signal model.

The working example has demonstrated to us that GPDD is just a right means
for realizing elementwise circuit reduction at both the topology and algebraic levels
simultaneously. In fact, algebraic simplification is a direct consequence of topological
simplification. To the authors’ knowledge, there does not exist another symbolic method
that can offer the same functionality.

The exposition so far leads us to the following summary on the GPDD binary topo-
logical reduction rules:

Rule 1. Reduction by the ∞-operation: When a symbol K is assigned to infinity, all
paths not containing K can be early terminated at “0.” In addition, the dashed arrow
of each vertex K is terminated at “0,” and, meanwhile, the symbol K is evaluated
at K = 1.
Rule 2. Reduction by the 0-operation: The simplest way is to substitute K = 0 in
evaluation. This is equivalent to terminating the solid arrow of each vertex K at
“0.”

We remark that GPDD is a flexible data structure that can be used for topological
deduction, numerical evaluation, and other purposes with a great deal of intuition. To
fully appreciate the technical details on the GPDD manipulation, we refer the reader to
Shi [2013] and Shi et al. [2014] for an in-depth exposition. Here we have re-presented
some key ingredients of GPDD that are most pertinent to reduced model generation.

4. AUTOMATIC MACROMODEL GENERATION

In this section, we develop a formal procedure for reducing metal-oxide semiconductor
field-effect transistor (MOSFET) analog circuits and generating simplified macromod-
els automatically. The beginning circuit is a MOSFET analog circuit, in which each
MOSFET device has been substituted by its high-frequency small-signal model shown
in Figure 7. We call the substituted circuit a full-order small-signal circuit. We then
apply our in-house GPDD program (written in C++) to construct a GPDD for this
full-order circuit. This stage may consume certain amounts of computation time and
memory depending on the circuit size (the number of metal-oxide semiconductor (MOS)
devices it contains) and the computing equipment. Typically, for an opamp circuit con-
taining 10 to 20 MOS transistors, the GPDD construction time ranges from seconds
to minutes on a decent laptop computer. The exact computation time depends on the
symbol order and the circuit structure as well. In Shi [2013] some evaluations on the
timing and memory consumption were reported. For further larger circuits, hierarchi-
cal analysis procedures have been proposed that made use of port connection proper-
ties in most amplifier-type circuits [Li et al. 2011]. In this article, we shall pay more
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Fig. 8. Single MOSFET amplifier (the substrate of M1 is grounded).

attention to the performance of another program, called the GPDD-Reduction program
(also written in C++), which is used to reduce a full-size GPDD in order to generate a
reduced macromodel topologically.

A full-order small-signal circuit has such a large scale that it is inconvenient to
be used directly for design analysis, unless it is used for computer simulation (e.g.,
SPICE AC analysis). Most of the design analysis and innovation work is based on a
reduced-scale circuit, which, depending on the circuit architecture and design needs,
can be transformed and altered by the designer [Leung and Mok 2001]. Automatic
simplification can save a great amount of manual work during design reasoning and
knowledge discovery.

It is well known that in a full-order small-signal circuit a large number of small-
signal elements do not play the dominant role (or, in other words, directly affect the
circuit response notably). Such element can be eliminated (i.e., removed by opening
or shorting) without drastically affecting the frequency response in the main working
frequency range. For example, most of the parasitic capacitors/resistors mainly affect
the high-order dynamics, that is, those high-order poles and zeros. Higher-order poles
and zeros are not the design focus in most analog IC applications. These are the main
reasons why a good number of small-signal elements can be pruned to generate a
condensed small-signal model without affecting the dominating circuit behavior. This
technique is always at the heart of analog IC design. It is also interesting to observe
that parasitic elements are local to each transistor. Reducing the elements like Cgd,
Cgs, Cdb, or Csb (by opening) and rd, rs, rdb, or rsb (by shortening) does not alter the
connection of the transistor in circuit. One parasitic element in one transistor does not
depend on another element in another transistor. This mutual independence provides
us with a convenient way of pruning them after identifying that some of the parasitic
elements do not affect the input-output response significantly. Let us illustrate this
fundamental concept by use of another example containing a single MOSFET.

Shown in Figure 8 is a common-source single-MOSFET amplifier with a load resistor
RD and a load capacitor CL. After replacing the n-channel MOSFET by its small-
signal model shown in Figure 7, we obtain the linearized circuit shown in Figure 9.
After running the GPDD-Reduction program, we obtain the simplified circuit shown
in Figure 10. This reduced circuit, although having a smaller number of elements, still
preserves the frequency response of the original circuit within the frequency range of
interest, as shown in Figure 11. Clearly, the reduced circuit model is better readable
and conforms to most designers’ intuition.

The original GPDD data structure for the full circuit is too complicated to display,
but the reduced GPDD for the simplified circuit can be viewed, see Figure 12, where
Gmix := Rds ‖ RD ‖ CL, which is the result of lumping several elements due to reduction.
More details of the GPDD construction are listed in Table II. Num. terms and Den. terms
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Fig. 9. Full-size small-signal model.

Fig. 10. Simplified circuit for the single MOSFET amplifier.

Fig. 11. Comparison of frequency responses before and after reduction.

Table II. Comparison of the GPDD Details between the Full Circuit and the Reduced Circuit

Circuit Num. terms Den. terms GPDD size Graph edges
Full circuit 6 19 5 17

Reduced circuit 2 2 3 8
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Fig. 12. GPDD structure of the simplified circuit.

stand for the numbers of terms in the numerator and denominator of the generated
symbolic transfer functions. GPDD size is measured by the number of vertexes in the
GPDD data structure. Graph edges measures the number of edges representing the
circuit.

4.1. Proposed Simplification Algorithm

The proposed symbolic simplification method is a supervised truncation procedure.
By supervision, we mean that whenever applying an operation (∞-operation or 0-
operation) to a circuit element, we check the variation of the frequency response over a
preselected frequency range. Since this evaluation is to be repeated for every operation
on every element, we need to take into account of computational efficiency for practical
use. Therefore, an economic strategy is to select a minimum number of anchor reference
points for the evaluation of response deviation. Experiments have convinced us that
the dc gain and phase margin are two characteristic measures adequate for monitoring
the ac response perturbation. There are several points that can be attributed to the
rationale. First, dc gain is a critical measure of opamp performance that is not allowed
to change by macromodeling. Second, the phase margin is defined at the unity-gain
frequency (typically referred to as the GBW frequency). Some opamp design work
suggests choosing the second pole as a multiple of the GBW (called the separation factor
in Palmisano et al. [2001]), meaning that fixing the frequency response up to the point
GBW can more or less fix the circuit dynamics up to the second pole. Approximation
up to this order of dynamics is usually adequate for analog IC design analysis and
macromodeling.

Since an analog IC has to have AC response with certain performance characteristics
to begin with, we assume in this article that an opamp to be treated for macromodeling
should have been initially sized to exhibit a certain gain and phase margin but not nec-
essarily optimized. This is a reasonable assumption because a condensed small-signal
model is typically used to represent the functional operation of the original transistor
circuit. If the original circuit has been roughly sized and biased, then transistors that
are supposed to be active must have been biased in the active regions. Then insignif-
icant parasitics of MOSFET can be differentiated from those significant small-signal
elements. Only under such a condition would a condensed small-signal model make
sense.

Let H(s) be the frequency response of the circuit under consideration. It is evaluated
at two frequency points, f = 0 and f = fu, where fu is the unity-gain frequency
(UGF), that is, satisfying |H( j2π fu)| = 1. We denote by A = |H(0)| and � = ∠H( j2π fu),
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respectively, the reference dc gain and phase at fu of the original circuit. The reference
frequency response coordinates (0, A) and ( fu, �) on the Bode plot curves are referred
to as the anchor points.

Let S be the set of all symbols of a circuit N . The symbols (i.e., the circuit elements)
in this set are listed as βi ∈ S, i = 1, . . . , |S|, where |S| denotes the size of the set S.
When we apply the ∞-operation to the element βi, we obtain a new network whose
transfer function is denoted by Hβi (s). On the other hand, applying the 0-operation to
the element βi results in another new network with the transfer function Hβ̄i

(s). (Here
we slightly abuse the notation by using the symbol name βi itself for the ∞-operation
and β̄i for the opposite.)

As long as Hβi (s) and Hβ̄i
(s) are evaluated to normal nonzero numbers at both f = 0

and f = fu, we denote by Aβi := |Hβi (0)| and �βi := ∠Hβi ( fu) (similarly for β̄i) and
compare the deviations of |Aβi − A|, |�βi − �|, and the counterparts with β̄i to see the
effect of the binary branch operations. In GPDD any abnormal values (0 or infinity
or not a number) of Hβi (s) or Hβ̄i

(s) at a frequency point can be detected by checking
the GPDD vertexes of the symbol βi to see whether it is a common factor for both
numerator and denominator or either of them. The details will be explained later in
the Section 4.2.

In order to be able to compare the severity of deviation after one operation is ap-
plied to a symbol, we introduce the following relative translation measure, called the
significance (or score) of a symbol with the operation βi or β̄i:

ε|βi :=
√(

Aβi − A
A

)2

+
(

�βi − �

�

)2

. (6)

(Replacing βi by β̄i gives another formula.) The choice of the relative error form is for
the convenience of adding the two errors in the Euclidean distance form. Note that both
A and � at the two anchor points should not be zero if the circuit is working properly.

The rationale of using the two anchor points for assessing the significance of each
circuit element is easily explained. If the elimination of the circuit branches corre-
sponding to a symbol (by one of the binary operations) causes a large deviation in the
frequency response, then the same effect should be observable from the dc gain and
the phase margin. We also discussed that UGF is closely related to the second pole
location. If the frequency response up to UGF is relatively untranslated, then it means
that the dominant pole positions and hence the phase margin should not be largely
perturbed.

The larger a deviation is caused, the more significant an element is. Hence, the
circuit elements with higher significance or score are more critical to the circuit and
thus deserve to be preserved during simplification. In contrast, those less significant
elements can be eliminated, and the specific elimination operation should be the one
making smaller perturbation to the AC response. For example, the two series resistors
rd and rs at the drain and source terminals of a MOSFET (see Figure 7) cannot be
opened, because if opened, then the transistor structure would be damaged. But they
can be shorted if their effect on the circuit dynamics is weak. GPDD can be used to
identify which reduction operation is more appropriate for a parasitic element.

The anchor point strategy was first introduced by the authors in the conference article
[Hu et al. 2015], where some preliminary experiments were reported to demonstrate the
effectiveness. In this article, we have made more effort on streamlining the presentation
and present more test cases to consolidate the validation.

Given a small-signal network N , Algorithm 1 describes the mechanism of the GPDD-
Reduction program. This algorithm consists of two phases: the Scoring Phase and
the Reduction Phase. In the first phase, all symbols are scored by evaluating their
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ALGORITHM 1: Topological Reduction Algorithm
Input: Small-signal netlist N and the number of symbols q to be removed.
Output: Simplified circuit Nsimp.

1 Run the GPDD program to construct a GPDD for N ;
2 Evaluate A := |H(0)|; � := ∠H ( jπ fu);
3 for each symbol βi ∈ S do
4 Apply the ∞-operation to symbol βi ;
5 Evaluate Aβi := |Hβi (0)|;�βi := ∠Hβi ( jπ fu);
6 If either of above evaluates to an abnormal number, ε|βi := ∞;
7 Else calculate ε|βi using (6);
8 Repeat the above steps for the 0-operation to obtain ε|β̄i ;
9 Find εi(opi) := min(ε|βi , ε|β̄i ); save the significance of βi with the operation opi that

leads to the smaller relative error;
10 Restore the circuit, that is, GPDD;
11 end
12 Sort S in increasing order according to εk(opi), k = 1, · · · |S|;
13 Remove the first q symbols in S from N in sequence from the least significance up by

applying the operation opj associated with ε j for j = 1, · · · , q. Each reduction is monitored
by a GPDD evaluation of the error variation. Report error if a large error is observed;

14 Return the reduced network N̂ ;

significance one by one. After finishing one assessment, this symbol is restored in
the circuit and we begin the assessment of the next symbol, and so on. Hence, the
significance assessment of each symbol is performed independently. Each symbol has
two scores, and the operation with a lower score is designated to be the reduction
operation in the second phase. If during the scoring stage an operation to a symbol
results in a malfunctioning circuit (i.e., GPDD evaluates to an irregular number),
then it means that that symbol cannot be operated that way. We assign an infinity
significance to this symbol for that operation.

In the second phase, the q symbols of the lowest scores are reduced sequentially. Be-
cause of the sequential reduction, we should be cautious about any disruptive behavior,
mainly caused by a malfunctioning middle circuit. Fortunately, since the q symbols have
the weakest influence to the circuit behavior, we did not observe any malfunctioning
middle circuit in our experiment. A reasonable explanation is that all of those lowest
scored elements are insignificant parasitic elements local to each MOSFET. As long
as they are operated in a proper way (with the least disruption to the whole circuit
behavior), a reduction operation would not result in a malfunctioning circuit.

In the next subsection, we slightly discuss some cautions on implementation that
may affect efficiency and the generation of readable circuit.

4.2. Cautions in Implementation

GPDD, as a symbolic representation, is a mathematical system that performs algebraic
(more preciously polynomial) computation. In addition to generating product terms,
it represents a symbolic transfer function in division form. Hence, if there exists a
common factor (a symbol), say, K in the numerator, the denominator, or both, setting
K = 0 or ∞ will cause an abnormal transfer function. Such abnormality might occur
both in the scoring phase or during the reduction phase.

The GPDD representation of a symbolic transfer function is derived from the alge-
braic equation N · X + D = 0 at its root, where N is the symbolic function obtained
from the solid-arrow pointed child vertex from the root X and D is the other function
obtained from the the solid-arrow pointed child vertex from X. If an abnormality occurs
in the scoring phase, then it must be due to a symbol K whose branches in the circuit
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have connection with the input/output ports. Such K could become a common factor
in the function at vertex N or D, causing N = 0, ∞ or D = 0, ∞. As a result, the
transfer function H(s) is evaluated to 0 or ∞ as well. Such a circuit is a malfunctioning
circuit and we call the TF value an abnormal value. Whichever case occurs, the associ-
ated symbol with that operation is scored infinity, meaning that this operation for that
symbol cannot be adopted in reduction.

Another case is to do with a dangling element that results from circuit reduction.
A circuit with a dangling element is still a well-functioning circuit, but the dangling
element is redundant and should be removed from the circuit. This case can be
illustrated by the first example we worked on earlier. We see in the middle step
of Equation (5) that the common factor C2 is eliminated from both numerator and
denominator. It indicates that all product terms generated by GPDD must contain
that symbol or, equivalently, that all 1-paths in GPDD must pass by that symbol.
This is evident in Figure 6. It tells us that C2 is a dangling element, and it is caused
by the previous removal (opening) of the element R2 from the circuit of Figure 3.
Although such a circuit remains well behaved, the element C2 is redundant and should
be removed for compactness. A common-factor symbol in GPDD can be identified as
follows. First, all paths must go through that symbol. Second, all GPDD vertexes with
that symbol must have all of their dashed arrows pointing to “0.” All such GPDD
vertexes can be suppressed by properly repointing the incoming pointers to their
solid-arrow pointed child vertexes (including arrow sign updates).

Some other specialties in implementation are worth mentioning as well. Prepro-
cessing is a helpful means to improve the efficiency of macromodel generation and
interpretability. Preprocessing can recognize (1) virtual ground and (2) constant bias-
ing (current or voltage) sources.

Virtual ground exists in differential circuit structure. But we have to implement
some rules in a computer program to automatically recognize it. To generate a human
readable circuit model, we convert a virtual ground to a real ground by interactive
marking in a user interface (or using some special rule). Constant biasing sources refer
to those MOSFET devices playing the role of biasing currents or biasing voltages. Such
devices can be marked in the user interface as well before reduction or by a simulation-
based recognition method. Since these issues are implementation specific, we are not
going to further expand on them in this work.

4.3. Discussion on Scalability

Scalability is a concern in all automation techniques involving symbolic analysis. All
algebraic or graphical symbolic analysis methods are of exponential complexity if they
are requested to produce exact results. Although using a superior algorithm or data
structure like BDD can mitigate the complexity to certain degree [Shi 2010], the nature
of exponential complexity does not change. Hence, symbolic construction of GPDD
cannot be scalable to extremely large analog circuits. But this does not prevent us
from applying this technology to analog IC design automation, because, due to the
continuous dedicated research effort, current symbolic circuit analysis techniques can
cope with exact analysis of a large class of analog ICs, including those most commonly
seen as opamps [Shi et al. 2014]. One should not ignore the power of the current state
of the art of this technology simply due to its lack of scalability.

It is well known that even for small-scale analog ICs like those most common opamps,
design automation in the sense of starting from a high-level description to a well-sized
circuit ready for layout is still in its infancy. Powerful scalable SPICE simulators
cannot fulfill the role of the synthesis needs like automatic generation of macromodel
in circuit form with symbolic model parameters. For such reasons, even algorithms
with very limited scalability are of practical value, as long as they can be applied to a
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certain class of analog circuits whose design effort still involves a great deal of manual
work today.

Since the proposed topological reduction algorithm has to start from an a priori
constructed GPDD, it implies that the beginning circuit must not be excessively large.
The original work on GPDD [Shi 2013] has demonstrated that most commonly seen
opamps (containing about 20 CMOS transistors) are within the capacity of GPDD. A
later work [Li et al. 2011] has further demonstrated that hierarchical analysis is a
feasible means for extending the GPDD capacity to even larger analog ICs.

However, for macromodel generation, it is worth mentioning that a simpler strategy
can be used to address the scalability challenge. The strategy is by divide and conquer.
Because the proposed model generation method is topological, it allows us to partition
a given circuit a priori into several smaller parts topologically. This approach can
be most beneficial for those opamps in multi-stage form, because their connections
are in the form of cascading ports added with several frequency compensation paths
[Leung and Mok 2001]. For topological reduction, we typically choose to keep all the
compensation elements in a multi-stage circuit intact while reducing the rest of the
circuit by segmented stages.

5. EXPERIMENTAL VALIDATION

This section is dedicated to a comprehensive validation on the proposed macromodel
generation method. In Hu et al. [2015], we tested the reduction method on two opamp
circuits, the two-stage MCNR opamp (see Figure 1) and a folded-cascode opamp. Due
to space limitation, the experiment was limited to a simple verification. In this section,
we plan to present a more factual report on the multiple aspects regarding the reduced
macromodel generation. Interested issues include the following: (1) effectiveness when
applying the method to opamp circuits with more involved structure like two-stage
opamp with voltage buffer (VB) compensation and current buffer (CB) compensation,
(2) robustness of the method in the sense of varying device sizes, and (3) pole-zero
check before and after reduction. These facts were not reported in Hu et al. [2015].
The robustness issue is of special interest, because in real design practice MOSFET
device sizes are constantly modified to tune the circuit performance. We do not want
an auto-generated model to be valid with one sizing case but not with another.

The experiment is divided into three parts. In the first part, we apply the GPDD-
Reduction program to the two-stage opamp with two compensation structures, one with
the VB compensation shown in Figure 13 and the other with the CB compensation
shown in Figure 14. Because several additional MOSFET devices are added to the
circuit for compensation, we attempt to see whether the reduction program can capture
the compensation structure in human readable form. In the second part, we report the
test results on using the reduction program for an opamp circuit with three different
sizing sets. In the third part, we present the effect of reduction from the perspective of
pole-zero behavior.

5.1. Part I: Test on the VB- and CB-Compensated Opamps

Opamps with VB or CB compensation were studied in several publications [Palmisano
and Palumbo 1997; Palmisano et al. 2001; Mahattanakul 2005]. Manually derived
small-signal models were presented in these works. The auto-generated small-signal
macromodels after running the GPDD-Reduction program are presented in Figures
15 and 17, respectively, for the VB-compensated and CB-compensated opamps. The
program only generated simplified netlists. We manually drew the circuits for human
reading. As can be seen, the reduced circuits preserve the original circuit structures
(two stages with proper compensation). We see from the reduced models that both VB
and CB compensations essentially inject current to the compensation paths, which play
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Fig. 13. Two-stage opamp with the voltage buffer (VB) compensation.

Fig. 14. Two-stage opamp with the current buffer (CB) compensation.

Fig. 15. Generated macromodel for the VB-compensated opamp.
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Fig. 16. Frequency response comparison for the VB-compensated opamp.

Fig. 17. Generated macromodel for the CB-compensated opamp.

the role of adjusting one of the zero paths, fulfilling the goal of relocating the dominant
left-half plane zero. In addition, the annotated device parameters in the reduced models
clearly show the effect of parasitics of the original circuits. When we derive the pole-
zero expressions from these reduced circuits, the effect of those parasitics on the poles
and zeros can be identified with great intuition.

To check the accuracy of the reduced models, we ran numerical AC analysis of both
full and reduced circuits. The frequency responses are compared in Figure 16 for the
VB-compensated opamp and in Figure 18 for the CB-compensated opamp. We only
see minor discrepancies due to the negligence of the high-order effects in the reduced
models.

As we mentioned earlier, GPDD is a shared data structure that can be used for
numerical AC response evaluation. Except for relatively longer times for initial con-
struction (seconds to a few minutes), the numerical evaluation time for sorting all
small-signal parameters (including many repetitions for significance assessment) is
minor, typically less than 1s. Hence, time cost is not a big concern.
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Fig. 18. Frequency response comparison for the CB-compensated opamp.

Table III. Circuit Setting for the
Two-Stage MCNR Opamp

Parameter Value
Biasing voltage Vbp 1.12V
Load capacitor CL 2pF
Channel length L 0.5μm

Supply voltage V dd 1.8V

Table IV. Three Sizing Sets for the Two-Stage MCNR Opamp

Parameter Case 1 Case 2 Case 3
DC input voltage 0.9V 0.7V 1.1V

W (M1) 20μm 40μm 25μm
W (M2) 20μm 40μm 25μm
W (M3) 5μm 1.5μm 1μm
W (M4) 5μm 1.5μm 1μm
W (M5) 48μm 12μm 10μm
W (M6) 30μm 33.5μm 32μm
W (M7) 144μm 144μm 144μm

Rz 1.75k� 1.75k� 1.5k�

Cc 350fF 350fF 250fF

5.2. Part II: Test on the Robustness of the Macromodel Generation Method

In this section, we test another important issue; that is, if a macromodel has been gen-
erated from a sized opamp circuit, then we slightly adjust the sizes of the MOS devices
and regenerate the macromodel. Would the macromodel generated in the second round
differ significantly from the first round? This question is relevant to the robustness of
an auto-generated macromodel. As a matter of fact, the model robustness is to do with
the anchor points selection during element assessment. We anticipate that, as long as
resizing does not largely change the frequency response behavior, the auto-generated
macromodel should not differ greatly.

To test the claim, we used the two-stage MCNR opamp shown in Figure 1 for experi-
ment. This circuit was biased as the setting given in Table III. Three sizing and biasing
sets listed in Table IV were considered. The macromodels generated by the GPDD-
Reduction program are drawn in Figure 19 for the sizing cases 1 and 3 (turned out to
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Fig. 19. Generated macromodel for the two-stage MCNR opamp with the sizing set of Case 1 in Table IV.

Fig. 20. Generated macromodel for the two-stage MCNR opamp with the sizing set of Case 2 in Table IV.

Table V. Circuit Reduction Effect in Terms of Poles and Zeros

Circuit
Original Reduced

# Poles # Zeros # Poles # Zeros
MCNR opamp 6 6 4 2

VB-comp opamp 6 6 3 2
CB-comp opamp 7 7 4 2

be identical) and Figure 20 for the sizing case 2. The majority of the circuit elements in
the two reduced models are identical, except for two minor parasitic capacitors; Cdb2 is
connected as the output capacitor of the first stage in Figure 19 and Cdb7 is connected
as the output capacitor of the output stage in Figure 20. Such a minor difference can
be ignored in design practice, unless these parasitics need special attention.

5.3. Pole-Zero Check

Since the reduced macromodels are mainly for design use, and poles and zeros are
important design means, it would be of interest to inspect how a reduced model would
change them.

First, Table V shows the change of the numbers of poles and zeros before and after
reduction for the three test circuits. The reduction in numbers is as expected. Table VI
further shows the details of pole-zero locations for the MCNR opamp with the sizing
set of Case 1 given in Table IV. We see interestingly that the reduced macromodel has
automatically taken care of pole-zero cancellation and disregarded some high-order
poles and zeros. The dominant poles and zeros of interest in design are captured.
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Table VI. Pole-Zero Comparison for Two-Stage MCNR Opamp

Full circuit Reduced circuit

Poles (Hz)

−24.62K −25.64K
−19.41M

−374.1M ± 65.11M −375.8M
−537.4M ± 99.56M −554.0M

−631.9M

Zeros (Hz)

−21.25M
−298.0M −298.2M
−418.8M
−1.018G −1.264G
3.845G
49.83G

Fig. 21. Illustration of analog circuit design cycle.

5.4. Discussion on Potential Applications

Due to the space limitation, we are not able to explore further in this publication on the
applications of auto-generated macromodels. We anticipate that this novel methodology
can have many potential applications in analog IC design. The main benefit of using this
tool is the turn-around time. A user can quickly obtain an auto-generated macromodel
without going through lengthy manual procedures.

Analog IC design is most often an iterative process. A designer may start from a
sketch with only a few transistors and then gradually add extra transistors to the
schematic to acquire performance enhancement (so-called design reasoning). Hence,
in automatic macromodel generation, we may assume that one circuit is already well
sized with acceptable metrics. We generate a macromodel using GPDD-Reduction for
such a circuit. If we need to add other components to this circuit, then we may manually
add extra small-signal components to the auto-generated model and then go back to
construct another transistor-level circuit by modifying the former one. This design cycle
is illustrated in Figure 21.

In this cycle, the step of “macromodeling” is always there. Hence, undoubtedly, an
automatic model generation tool can greatly speed up the process of design reasoning
and knowledge discovery.
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6. CONCLUSION

This article has formalized a systematic procedure for generating symbolic macromod-
els in topological form for analog integrated circuits. The procedure is based on directly
manipulating the circuit topology by applying the GPDD algorithm, thereby the gen-
erated macromodel still takes an interpretable circuit form, which can be used for
design reasoning and exploration. Analog IC design is a knowledge-intensive practice.
Currently smart design automation tools are still rare, and, hence, more research is
necessary to develop helpful tools to enhance learning and innovation in this area.
In the upcoming publications, we shall address applications of this technology in ad-
vanced designs such as studying various mismatch effects, gate leakage issues, and
subthreshold design, and so on.
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