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ABSTRACT

Fingerprinting of quantum computer devices is a new threat that
poses a challenge to shared, cloud-based quantum computers. Fin-
gerprinting can allow adversaries to map quantum computer infras-
tructures, uniquely identify cloud-based devices which otherwise
have no public identifiers, and it can assist other adversarial attacks.
This work shows idle tomography-based fingerprinting method
based on crosstalk-induced errors in NISQ quantum computers. The
device- and location-specific fingerprinting results show prediction
accuracy values of 99.1% and 95.3%, respectively.
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1 INTRODUCTION

Today’s quantum computers are commonly called Noisy Intermediate-
Scale Quantum (NISQ) quantum computers [12]. NISQ quantum
computers are today small, but have promising applications in op-
timization, chemistry, and other important areas [6, 8, 9]. Further,
quantum computing hardware keeps evolving at a fast pace, and
1000-qubit quantum computers are projected to come online in
near future [4]. As this increasing number of qubits are available,
ideas for multi-programming and shared quantum computers have
emerged [3]. Instead of allocating all qubits to a single task or user,
researchers have been exploring how the computers can be shared
between different users or tasks. Sharing of the quantum computers
can improve the utilization of the resources and eventually lower
costs for users. But it comes at a security cost.
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1.1 Cloud-based Quantum Computers

There is now a growing interest in, and practical deployments of,
cloud-based quantum computers, also called Quantum as a Service
(QaaS). Among others, IBM is providing free access to its quantum
processors and simulators through IBM Q service. Other cloud-
based vendors providing quantum computer access today include
Amazon Braket and Microsoft Azure.

Cloud-based quantum computing opens up many new opportuni-
ties, not just for renting single-user quantum computers, as is done
today, e.g., through IBM Q, but for multi-programmed and shared
quantum computers [3]. With cloud-based access, the provider can
decide which quantum computer to schedule the programs on, or
it can put two or more programs (users) on the same computer if
the resources allow. Time sharing of resources is not possible in
quantum computers yet, but spatial sharing of qubits is possible.

1.2 Security Challenges of Cloud-based
Quantum Computer Architectures

Cloud-based quantum computers are vulnerable to many threats
not present in in-house uses of quantum computers. For example,
the remote users can be malicious and try to learn the infrastructure,
harm the infrastructure, attack other users, or leak information from
other users.

On the attack side, information leakage [11] or attempts at inter-
ference with other users [1], have now been proposed and demon-
strated in emulated multi-tenant setting. Others have shown also
that when malicious users share the same quantum computer as
the victim, they can try to exploit crosstalk to perform fault injec-
tion in a quantum machine learning classifier, e.g., to increase the
probability of misclassification [1].

These attacks implicitly assume that the attacker is able to locate
himself or herself on a specific quantum computer (i.e., device), or
within the quantum computer (i.e., locality). Early work [11] has
proposed a very simple Quantum Physically Unclonable Functions
(QuPUFs) design based on readout error or one-qubit gate error
and considered two older IBM Q machines.

This work advances the state of the art with a new device fin-
gerprinting approach for both device-specific and locality-specific
fingerprinting based on idle tomography, showing superior accu-
racy and evaluation on 9 current machines and dozens of possible
subgraph embeddings withing these devices.

1.3 Contributions

The contributions of this work are:

e Development of a crosstalk-based fingerprinting approach
for NISQ quantum computers.
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e Demonstration of reliable device-specific and location-specific
fingerprinting for quantum computers.

e Evaluation on 9 IBM Q superconducting machines with var-
ious qubit sizes and topologies.

The code used in this work will be made available under open-
source license at https://caslab.csl.yale.edu/code/qc-fingerprinting)/.

2 BACKGROUND

This section introduces background on crosstalk and idle tomogra-
phy, in-depth details of quantum computers and their architectures
are available from existing work, e.g., [9].

2.1 Noise and Crosstalk

Noise in quantum computers can be attributed to gate errors, deco-
herence errors, readout errors, and crosstalk errors. Gate errors can
affect single-qubit gates such as the Hadamard gate and two-qubit
gates such as the CNOT gate. Decoherence errors are due to the
interaction of the qubits with the surrounding environment, as a
result of which their state is lost or modified. Readout errors are
errors that occur in measurement operations that affect the readout
probabilities. Crosstalk errors result as gate operations on one or
two qubits (depending on the gate type) affect other, nearby qubits
or gates. The crosstalk can be qubit-to-qubit, coupling-to-qubit,
qubit-to-coupling, or coupling-to-coupling. As this work shows,
crosstalk is a feature of NISQ quantum computer hardware that
allows adversarial threats.

2.2 Measuring Crosstalk and Idle Tomography

Simultaneous Randomized Benchmarking (SRB) [5] or Idle Tomog-
raphy (IDT) [2] can be used to measure crosstalk. They both aim
to quantify crosstalk in terms of error rates. IDT has been recently
proposed by Sandia Labs [2], it uses a comparably small number of
circuits and relatively short circuits, and is the method selected in
this work due to its simplicity and effectiveness.

The principle for IDT is to characterize the error accumulated
by idle qubits over time. IDT is effective at measuring how the in-
fluence of gate operations propagates to other qubits via crosstalk.
Figure 1 displays a typical IDT setup, in which one or two qubits are
selected as drive qubits. These qubits are prepared in the |0) state
in the logical basis. The rest of the qubits are spectator qubits. Each
spectator qubit is prepared in one of the Pauli bases %, §, or Z. After
preparation, gate operations commence on the drive qubits. Com-
monly, the Hadamard gate H and the controlled-not gate CNOT
are used for single- and two-qubit drive cases respectively. In the
meantime, spectator qubits are kept at idle. We define the idle length
as the number of times the gate operations on the drive qubits are
repeated. Finally, we measure each spectator qubit in one of the
Pauli bases and output the measurement results, which are further
used for characterizing the Hamiltonian, stochastic and affine er-
ror channels. In addition, control-group experiments can also be
utilized to characterize error channels due to ambient effects. These
experiments take all qubits as spectators, and use the same idle
length values as in the drive cases.
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Figure 1: Circuit schematic of idle tomography circuits with single-
and two-qubit drive. Each spectator qubit g; is initialized in a Pauli
basis state |qu> and measured with respect to a Pauli basis w; €
{%, 9, 2}. The idle length s determines the number of times the drive
gates are repeated.

Given a combination of a driver gate and driver qubit(s), a com-
plete set of idle tomography circuits on n’ spectator qubits is enu-
merated from a combination of the following parameters:

o Initialization of each spectator qubit in a Pauli basis.
e Measurement of each spectator qubit in a Pauli basis.
e Idle lengths s € S, a set of idle length values.

In practice, we take a subset of this complete set by limiting S and
the values each parameter can take. These decisions depend on
the size and topology of the target device, as well as the desired
granularity of error characterization.

3 METHODOLOGY

This section is devoted to demonstrate the fingerprinting approach.
We outline the threat model in Subsection 3.1 and discuss each com-
ponent of the fingerprinting process in the subsequent subsections.

3.1 Threat Model

The fingerprinting method proposed by this paper is based on the
usual enrollment-inference paradigm. The threat model consists
of an attacker A and a cloud provider #. The cloud provider
manages k devices Dy, ... Dy, where the topology of each device
D;,i € {1,...,k} is described by a directed graph G; = (V;, E;). As
discussed later, in this work k = 9 due to the 9 IBM Q backend
machines used. Vertices V; represent the superconducting qubits
in each physical quantum computer, and the edges E; represent
couplings between the qubits. We assume that all k devices support
a common set of single- and two-qubit gates.

The topology of each device acts as a constraint for the placement
of single- and two-qubit gates. Specifically, suppose some device
D; with topology G; supports single-qubit operation Uj () and two-
qubit operation Uz(+,-). Up is supported on a qubit g if and only
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Figure 2: The 9 IBM Q machines (backends) used in the evaluation. The figure shows the qubits and physical topologies for each backend. The
backends can be grouped according to their path graph topology (left), T-shaped topology (center), and H-shaped topology (right). These are
represented in text as Ls backends, T5 backends, and H; backends. The fingerprinting circuits are mapped onto these topologies, or subgraphs

of the topologies if not all qubits are used.

0O 000 00000 0000000 0500 000000 000

@P; (b L, (© Lz () Ly

° H
©
©T, () Ls @7Ts

Figure 3: Topologies of the 7 tomography circuits used in the evaluation. These represent attackers A circuits. These circuits are mapped
onto the physical topologies of the backends shown in Figure 2, by the provider .

if ¢ € V;, and U, is supported on a pair of qubits p, g if and only
if (p,q) € E;. Hence for a quantum circuit C, we may define its
topology dependency G¢ as the minimal graph that supports all
single- and two-qubit operations in C.

The task of the attacker A is to gather one or more full-device
fingerprints for each G; during enrollment. Later in the inference
phase, based on this information, A will collect new fingerprint
data and attempt to match it to specific devices or localities on
specific devices.

The fingerprinting circuits we use are implemented in unmodi-
fied Qiskit provided by IBM Q. We assume (as is done today) that
the cloud provider ¥ runs attacker’s circuits without any modifica-
tions. We do not require pulse-level control either, only user-level
access. Obfuscation of circuits to hide the attacks or recompilation
of circuits to prevent the attacks, among others, are orthogonal and
future research topics.

3.2 Fingerprint Enrollment

During the enrollment stage, A gains knowledge of each G; by
running a set of full-device idle tomography circuits on D; subject
to single- and two-qubit drive. Given a topology G = (V, E), the
idle tomography experiments required for computing fingerprint
f(G) are categorized as follows:

e For each qubit g € V, use q for single-qubit drive and set
V'\ {q} as spectator qubits used for measuring crosstalk.

e For each coupling (p, q) € E, use p, q for two-qubit drive and
set V\{p, q} as spectator qubits used for measuring crosstalk.

o Perform further two sets of control-group experiments with
all qubits as spectator qubits and idle gate delays correspond-
ing to the single- and two-qubit drive respectively.

The circuit measurement results are analyzed with the pyGSTi
package [10]. The resultant weight-1 and weight-2 Hamiltonian,
stochastic and affine errors constitute the fingerprint f(G). When G
corresponds to a full-device topology G;, these error rates constitute
a full-device fingerprint f(G;) € R" of G; for some n € Z. In
practice, A may iterate through all devices multiple times. Each

complete pass constitutes a batch, and after some [ batches taken at
distinct points in time, A acquires the fingerprint set F := {f;(G;) |
jed{t,... 1} ie{1,...,k}}.

3.3 Fingerprint Matching

During the inference stage, A requests # to run a circuit with
topology dependency G’ = (V’, E’). If there exists some topology
G € {Gy,..., Gy} such that G’ is isomorphic to a subgraph G* of
G, G’ is determined to be satisfiable. In this case, P selects such
G > G*, allocates the locality G* on G, and establishes a bijective
embedding k : G’ — G*. The objective of A is then to infer G*
and ¢. Hence A proceeds to run idle tomography circuits on G,
while P translates the circuits on G’ to circuits on G* via ¢, without
exposing G* and G to A. After P returns the circuit measurement
results to A, the latter computes a fingerprint f(G’).

A then attempts to infer G* from f(G’). To do this, A iterates
through Gj, ... Gy and identifies the set {G” | G’ = G’} of sub-
graphs isomorphic to G’. For each G”’ a subgraph of some G;, A
utilizes {fj(G;) | j € {1,...,1}} C F to compute Fg» := {f;(G") |
j €{1,...,1}}. The set Fg~ for each G” is then used as a training set
to train a classifier Cg/ sensitive to fingerprints of isomorphisms of
G’. Finally, A takes the prediction of Cgr on f(G’) as the inferred
locality. The inference is correct if and only if Co/ (f(G”)) = G*.

4 EVALUATION SETUP

We evaluate the effectiveness of the fingerprinting scheme on 9
IBM Q machines (backends) shown in Figure 2. The machines were
used to run 9 batches of tomography experiments over 12 days.
For idle tomography, we examine the idle sequence lengths 1, 2, 4
and 8. All circuits are run and measured for 2048 shots. Each batch
generates one full-device fingerprint for each backend. Figure 4
shows the timeline of the tomography experiments. It is impor-
tant to run multiple batches over at least few days, as there are
periodic event when IBM calibrates the backends. Our evaluation
captures the calibration events and shows fingerprinting works
across calibrations.
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Figure 4: Experiment timeline showing when fingerprint data was collected from the 9 backends. The fingerprint collection was divided into
9 batches over 12 days. For each backend, each block displays the time between the invocation of the first circuit and the completion of the
last circuit in a batch. Some batches took a significant amount of time to finish due to other backend users in the fair-share queue and device

maintenance on IBM’s end.

Note, the individual fingerprinting measurements can be gath-
ered relatively quickly. Generating one full-device fingerprint takes
less than an hour on 5-qubit devices, and less than two hours on
7-qubit devices. The time it takes to fingerprint a proper subgraph
of each backend is less than that for the full-device fingerprint, and
is dependent on the size of the specific subgraph in question.

4.1 Choice of Subgraph Topologies

We evaluated 7 different subgraph topologies: P;, Ly, L3, L, T4, Ls,
Ts, as is shown in Figure 3. Note that Ls and Ts5 are themselves
full-device topologies (i.e. they occupy whole backend on Ls and Ts
devices respectively). These topologies are selected because they
are the only ones that are subgraphs of more than one backend
topology among the 9 devices. For each subgraph topology, we
consider all of its possible embeddings across all devices. Each
subgraph topology can be embedded (i.e. mappped to the physical
machiens) in many ways, and it is the attacker’s goal to find out
where their circuit was mapped. For example there are 84 ways for
cloud provider to map an L3 circuit to one of the 9 machines. Our
fingerprinting method is first to show ability for attacker to use
the IDT fingerprints to find out which of such dozens of possible
embeddings the cloud provider used.

4.2 Data Preparation

To limit the experimentation time, the physical measurements were
done using the Ls and Ts full-device topologies to obtain the full-
device fingerprint. Fingerprint data for the other subgraphs can
be comptued from Ls or T5 data. Given full-device fingerprint, for
each subgraph topology in Pi, Ly, L3, L4, Ty, Ls, T5, we follow the
methodology described in Subsection 3.2 to extract the fingerprints
for each of its embedded localities from the full-device fingerprint.

4.3 Fidelity Characterization

We characterize the fidelity of the fingerprints with two methods:

First, we compare the inter- and intra-embedding L? separation
between fingerprints for each subgraph topology and detail the
results in Subsection 5.1.

We then train a classifier for each subgraph topology from their
locality-specific fingerprints. The fingerprint data is standardized
and preprocessed with principal component analysis (PCA). The
main classifier is a neural network that consists of a dense layer
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Figure 5: Distributions of inter- and intra-embedding separation
for various topologies across all batches. The separation for two fin-
gerprints are calculated as their L? distance divided by their feature-
space dimensionality. This metric ensures comparability between
different subgraph topologies. Note that the y axis is log-scaled.

with sigmoid activation, where the number of units matches the
pre-PCA feature space dimension. This is followed by a dropout
layer of drop frequency 0.2 to prevent overfitting. Finally, a dense
layer with linear activation is used, where the output dimension-
ality matches the number of embeddings of the subgraph topol-
ogy. We use categorical cross-entropy as the loss function and use
the ADAM [7] algorithm for stochastic gradient descent. For each
model, we repeatedly train sets of 100 epochs until the loss is less
than a threshold value of 0.05. We examine the prediction perfor-
mance of the model in Subsection 5.2 and discuss the degradation
of prediction accuracy with time in Subsection 5.3.

5 RESULTS

This section shows the fingerprinting results.

5.1 Inter- and Intra-Embedding Distances

A comparison of inter- and intra-embedding distances is shown
in Figure 5. Each inter-embedding distance is calculated from a
pair of fingerprints on distinct embeddings in one batch, and each
intra-embedding distance describes the distance between two fin-
gerprints of the same embedding, but taken in two distinct batches.
To facilitate comparison, the distance values are normalized to the
feature-space dimensionality of each subgraph topology. Observe
that for all topologies, there exists clear separation between the
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Figure 8: Trend of device- and locality-specific prediction accuracy
for classifiers trained on batch 0.

two distributions, showing that the fingerprints clearly can distin-
guish between same and different embeddings.

5.2 Prediction Accuracy

To test the prediction accuracy, we vary the size of the training set
and examine the resultant prediction accuracy for various subgraph
topologies on two levels of specificity:

e Device-specific. A prediction is considered correct if the pre-
dicted locality exists on the same device as the true locality.

e Embedding-specific. A prediction is considered correct if
and only if the predicted locality exactly matches the true
locality.

Shown in Figure 6, as the number of batches in the training set
increases, the prediction accuracy values increase substantially.
Apart from an outlier of Ls in batch 8, complex subgraph topologies
are easier to pinpoint regardless of specificity. Observe that accuracy
values for most of the 4-qubit and 5-qubit topologies reach ~ 100%
when at least 3 batches are in the training set.

The above justifies the selection of 3 batches (0 to 2) as the
training set. Under this setting, the performance on various testing
sets is shown in Figure 7. Among Ly, Ty, L5 and Ts topologies, the
average device- and locality-specific prediction accuracy is 99.1%
and 95.3% respectively.

5.3 Accuracy Degradation over Time

Figure 8 displays the trend of accuracy degradation relative to test-
ing datasets. Note that a higher batch index in the testing dataset
corresponds to a longer period in time between training and testing.
Observe that in general, subgraph topologies that consist of at least
4 qubits display no significant degradation in prediction accuracy.
On the other hand, accuracy values for smaller topologies degrade
moderately over time. This result demonstrates resilience and sta-
bility of the proposed fingerprint scheme, as classifiers trained on
only one batch of fingerprints remain effective over a duration of
at least 12 days, especially for larger subgraph topologies.

6 CONCLUSION

This work demonstrated the new threat of fingerprinting of quan-
tum computers using crosstalk, and evaluated the approach on
IBM Q cloud-based quantum computers. The device- and location-
specific fingerprinting were demonstrated with accuracy to be 99.1%
and 95.3%, respectively. We showed excellent fingerprinting abilities
across many machines and across different calibration periods.
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