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This paper surveys the landscape of security verification approaches and techniques for computer systems at
different levels: from a software-application level all the way to the physical hardware level. Different existing
projects are compared, based on the tools used and security aspects being examined. Since many systems
require both hardware and software components to work together to provide the system’s promised security
protections, it is not sufficient to verify just the software levels or just the hardware levels in a mutually
exclusive fashion. This survey highlights common sets of system levels that are verified by the different
existing projects and presents to the readers the state of the art in hardware and software system security
verification. Few approaches come close to providing full-system verification, and there is still much room
for improvement. In this survey, readers will gain insights into existing approaches in formal modeling and
security verification of computer systems, and gain insights for future research directions.

CCS Concepts: • Security and privacy→ Formal security models; Security in hardware.

Additional Key Words and Phrases: Formal methods, theorem provers, model checkers, security verification,
processor architectures

1 INTRODUCTION
News articles and opinion pieces by top security researchers constantly remind us that as computing
becomesmore pervasive, security vulnerabilities aremore likely to translate into real-world disasters
[74]. Computing systems today are very complex systems, and if the design of the hardware,
software, or the way the hardware and software interact are not perfect, then there may be security
vulnerabilities that attackers can exploit.

To help find these potential vulnerabilities and prove the designed system is trustworthy, formal
methods can be used. For instance, in the development of eXecute Only Memory (XOM) [59], with
formal verification, a possible replay attack was identified and then the designed was improved and
proved to be secure. Since the security of the systems depends on the correctness of the protections
that both the hardware and software components provide, there is the need to verify the security
of both the hardware and the software.
Many “secure architectures” such as XOM have been designed to provide enhanced security

features in hardware, however, only a few of them come with formal verification. In academia,
these include [18, 28, 44, 47, 51, 59, 83, 84, 92]. For these secure architecture they mostly do not
come with any formal specifications or proofs for security. In industry, only a small number of
designs from hardware vendors provide some hardware features for security, e.g. ARM TrustZone
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Fig. 1. Hardware and software levels found in a typical computer systems are shown on the left. The projects
and levels which they consider are shown on the right. The verification projects surveyed in this work focus
typically on one or more of the levels. Broadly, projects either focus on multiple software levels, or hardware
levels; some projects span both software and hardware levels, but not all the levels. Note, some projects “skip”
certain levels, as indicated by the breaks in the arrows on the right-hand slide of the figure.

[88], Intel SGX [63], and most recently AMDMemory Encryption [1]. These designs also all rely on
the assumption that the hardware is correct – the industry designs we know about do not have any
publicly available formal security specifications nor proofs. With formal verification, the designers
could prove the system design and implementations are secure and trustworthy.
To help promote more security verification of computer systems, this survey aims to show

readers about current approaches to security verification of computer systems. In this survey, we
compare different projects that consider both the hardware and the software levels of a system, and
which use formal methods to verify security properties of such systems. We show the state of the
art in security verification and lower the barrier to entry into this field for interested researchers.

1.1 Software and Hardware System Levels Considered in Verification Process
A computer system is typically composed of multiple hardware and software levels, as shown in
Figure 1. The typical software levels are: Application, Operating System (OS), and Hypervisor. These
levels cover typical software running on a commodity computing system. The typical hardware
levels in a computer system are: ISA (Instruction Set Architecture), Microarchitecture, RTL (Register
Transfer Level), Gate, and Physical.

Traditionally, upper levels depend on the lower levels for functionality and security. E.g., a guest
OS relies on the Hypervisor to provide isolation from other malicious guests, if the more privileged
Hypervisor has a security vulnerability, the OS can not make any guarantees about security. At the
hardware level, for example, ISA is not secure if the microarchitecture that implements it has a
bug; and a microarchitecture realized using a flawed RTL that implements it is likewise not secure,
and so forth. The relationship is not strictly linear in that upper level always depends on all lower
levels. Some of the secure architectures have introduced hardware that allow higher software levels
to be protected from intermediate software levels. For example, in Bastion [18] applications are
able to communicate with the Hypervisor while bypassing the OS; or in HyperWall [84] a virtual
machine does not need to rely on hypervisor for isolation as the hardware provides some of the
basic memory management functionality. Thus, the security verification approach needs to consider
which levels are important for security verification.
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Fig. 2. General procedure for security verification.

The software and hardware levels needed for ensuring security of the system constitute the
trusted computing base (TCB) which contains all the software and hardware that need to be trusted
(although may not be trustworthy). Thus, the TCB should be verified for security to make it truly
trustworthy. Effectively, TCB consists of different components in different levels, and security
verification tools and methods should include all the levels in when checking the security of the
system. Figure 1 on the right side shows the various surveyed projects and the different system
levels that their security verification covers. Because different projects consider different levels, it
may be difficult to select the right approach (or mix of approaches) for security verification that one
may desire. Especially, some of the works skip certain levels, which may not be needed for their
verification, for example Moat [81] verifies applications with respect to ISA, and assumes hardware
fully protects the applications from OS or Hypervisor, so OS and Hypervisor levels are skipped. By
studying each group of projects, this survey aims to show the state of the art in security verification
of hardware/software and allow researchers and practitioners to understand how to better approach
security verification of their designs. We also show limitations of current approaches, and suggest
new or worthwhile research directions to help achieve computer system verification methodologies
that can check all the levels in TCBs of today’s and tomorrow’s systems, not just a subset of them.

2 GENERAL TOOLS AND MECHANISMS
This section presents a background on the different tools, mechanisms, and approaches typically
needed to check security guarantees. The general flow of the security verification process is shown
at a high level in Figure 2. The starting point is the actual system, either an already existing system
or a design of some new system whose security properties need to be verified. From the actual
system, or design, a representation of the system needs to be obtained in the verification tools, (a) in
Figure 2. In parallel, the security properties of the system need to be specified, (b) in Figure 2. The
security properties are closely tied to the system’s assumed threat model. The security properties
can be specified separately or together within the representation of the system, in which case (a)
and (b) would be done together. The final step is the actual verification process which takes the
system representation and security properties as input, and returns whether the verification passed
or failed, (c) in Figure 2. If the verification fails, the design needs to be updated and re-evaluated,
(d) in Figure 2.

2.1 System Representation
In order to check if a system complies with some properties, we need a representation of the system
that accurately expresses the behavior of the system. Ideally, the actual system description can be
used, such as the source hardware description language (HDL) code for hardware components,
or a programming language source code for software components. Otherwise, a model in the
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verification tool is needed. One reason a model may be needed is that the way a system is described
in HDL or programming language may not be compatible with the verification tool that is being
used, or the way the system is described is too complex for the verification process to handle.
Hardware components can be described with Hardware Description Languages (HDLs). The

most popular HDLs are Verilog [85] and VHDL [60]. Recently, a new tier of HDLs is emerging that
feature more high-level abstractions and reusability than circuit-level HDLs. This new generation
of HDLs is called Hardware Generation Languages (HGLs) [62], including Chisel [5], BlueSpec [68],
and Genesis2 [77]. There are some attempts to link hardware and circuit system representation
methods with security-property specification towards security verification, which we will present
in Section 3.
Software components can be described by their high-level implementation in programming

languages such as C, C++, or Java. There are also ongoing efforts to integrate design processes
and system specification with security-property specification and include verification information
inside programming languages as annotations. Examples include TAL [22] and Dafny [52].
Alternatively, some tools require a model of the system based on its original description. For

example, this survey later discusses VeriCoq which is a tool that can be used to translate (annotated)
Verilog code to code understood by Coq verification tools. If an automated method of creating
a model is not available, then model has to be created manually by engineers. However, when
creating models manually, proving the correspondence between the model and the actual system is
an open research problem.
Formal verification is done with respect to a system representation, as described above. Most

projects assume a trusted compiler or tool chain such that the system realization indeed matches
the system representation, and does not contain extra hidden, or unwanted, functionality that may
compromise the security of the system. For example, after verifying the C code of an application,
there is still a concern that the compiler may not generate the correct machine code from the C
code. A malevolent compiler might insert malicious code into the binary, as demonstrated in [86],
where a virus-infected compiler as able to inject back-doors into applications during compilation.
A number of projects include “trusted” compilers that are guaranteed not to inject behavior that
was not specified. One example of such a compiler is CompCert [53] which is a certified compiler
that generates binaries from Coq code. All surveyed work assumes trusted toolchains.

2.2 Security Properties Representation
Depending on the verification mechanism, either deductive mechanism or algorithmic mechanism in
Section 2.3 and 2.4, the security properties are represented in the corresponding verification tools.
In deductive mechanisms, the security properties can be represented in terms of logical formula. A
logical formula serves as a limitation on the states the system is allowed throughout its execution.
Some specialized forms of logic are used to express the relations between the states of the system.
In algorithmic mechanisms security properties can be expressed as invariants within a system, and
their validity is checked against all possible execution paths.

2.3 Formal Verification via Deductive Mechanisms
When using deductive mechanisms, verification is achieved by deducing properties from a system
representation. Theorem provers fall in this category. The key element in deductive mechanisms
is a proof. Deductive mechanisms use formal proofs to verify that a system complies with some
given properties.
Theorem provers (also referred to as proof assistants) aid the verification process by providing

frameworks for creating a mathematical model of the system, for specifying the security properties,
and for formally proving whether the model complies with the properties or not. Theorem provers



Survey of Approaches for Security Verification of Hardware/Software Systems 5

are generally composed of a language (such as Coq), and an environment for describing the proofs
(such as CoqIDE). There is a number of proof assistants used actively in academia and industry such
as: Coq [10], Isabelle/HOL [69], PVS (Prototype Verification System) [70], ACL2 (A Computational
Logic for Applicative Common Lisp) [46], and Twelf (LF) [39]. Theorem proving typically requires
a lot of effort and time to complete, and learning the required tools is seen as one of the difficult
aspects of verification using theorem provers. In the following paragraphs we will introduce
different theorem provers and give examples on their usage in functional and security verification.

2.4 Formal Verification via Algorithmic Mechanisms
Algorithmic mechanisms typically use an algorithmic search, which is performed over a system’s
representation and its states, rather than using deduction. Model checkers, SMT (Satisfiability
Modulo Theories) Solvers, and Symbolic Execution fall in this category.
According to [6] “model checking is an automated technique that, given a finite-state model

of a system and a formal property, systematically checks whether this property holds for a given
state in that model.” The security property that is being verified has to be defined using a logical
form. After the model and the property definition, the model checker can be run to see if the given
security property is valid in the system model. The checks can be done either for each transition or
each state using invariants, pre- and post-conditions. The execution time of the model checker is
determined by the invariants and the complexity of the model. The output can be positive (property
satisfied), negative (property violated), or the execution runs indefinitely. There are a number
of model checking tools: SPIN [43], Mur𝜑 [27], SMV [64], CBMC [49] For further details about
model-checker design, we point the readers to an early survey by Clarke et al. [20]. Model checking
has a well-known state explosion problem, which is the exponential growth rates of states. This
may lead to memory insufficiency or extremely long run times. For fairly complex systems, model
checking needs to use more abstraction to simplify the model. However, as the level of abstraction
gets higher, we run the risk of missing some important details of the system design.

Satisfiability Modulo Theories (SMT) solvers are used to solve satisfiability problems expressed
in first-order logic regarding some logical theory. For verifying systems, first they have to be
transferred into formulas that SMT solvers can work with. The validity of the property is then
checked by SMT solvers [9]. Note that SMT solver execution time can vary from a few seconds to
hours depending on the size of the problem. There are many verification tools using SMT solvers.
For instance, Z3 [25] is an SMT solver used by an intermediate verification language, Boogie [94],
and Dafny [52] is a programming language and verifier for functional correctness that uses Boogie
as its target language. Vale [14], a language for expressing and verifying high-performance assembly
code, uses Dafny/Z3 as its verifier backend.
Unlike model checking, which requires a model of the system, symbolic execution [7] deals

directly with the program semantics assuming symbolic values for inputs. It thus arrives at ex-
pressions in terms of those symbols and constraints them with the possible outcomes of each
conditional branch. Finally, program expressions can be evaluated by solving the constraints (e.g.
by an SMT-Solver [25]). In this way, all possible execution states can be evaluated simultaneously,
at great cost of storage and slow execution during analysis. There are many symbolic execution
engines targeting different software levels: while KLEE [16] symbolically executes programs in the
LLVM Intermediate Representation (IR) [50], Angr [78] executes lifted binary programs in VEX
IR [67], and JPF [41] executes Java byte code.

3 SECURITY VERIFICATION FOCUSING ON THE HARDWARE LEVELS OF A SYSTEM
In this section, we present projects which focus on the security verification of the hardware levels.
As listed in Section 2, the formal verification tools have their own languages with formal semantics
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for describing system specification, security properties or invariants, and for doing the verification
and proofs. However, these languages differ significantly from common HDLs that are used in
hardware design.

To bridge the gap, researchers either manually or automatically convert system designs in HDL
to system representations in formal verification tools’ languages; or, conversely, generate HDL
specification from the system representation written in a verification tool’s language. With the
former approach, hardware designer can design the system in HDL as usual, and main new effort
is in generating models in the verification tools’ language and describing the security specification.
With the latter approach, hardware designers need to learn the language used by the verification
tools and develop hardware, as well as the security specification and proofs with that language.
The tools then generate HDLs from the system representation, so the system can be synthesized
normally with existing tool chain.

The following classes of projects are discussed next: manually modeling systems in verification
tools’ languages, automatically converting system designs in HDLs to models in verification tool’s
languages, adding verification features to existing HDLs, or generating HDLs from system model
written in verification tool’s language.

3.1 Approaches Requiring Manually Modeling Systems in Verification Tools’
Languages

Since the languages used in verification tools are usually very different from HDL. For security-
critical modules, sometimes it makes sense to manually model the system and verify the model
with security specifications. Depending on the size of the system, this process is time-consuming.
Moreover, this process does not guarantee that the model faithfully represents the real system.
If a proof assistant is used, the system is modeled as a set of definitions, and the security

properties are formalized as theorems. Then the proof is developed manually and checked by the
proof assistant. If a model checker is used, the model of the system is built in the form of a finite
state machine (FSM). The security properties are represented by a set of invariants. The model
checker can automatically search for all possible states, and check if the invariants always hold. If
so, the security properties are said to be proved. Usually, the model is simplified to avoid the state
explosion problem.

3.1.1 Micro-Policies. A recent work on Programmable Unit for Metadata Processing (PUMP) [26]
added programmable metadata processing unit alongside with the data computation. PUMP allows
programmers to create policies and rules that enforce IFTmechanisms bymanipulating themetadata
tags in each instruction. Metadata processing can thus support many safety and security policies.
However, given a high-level specification, it is nontrivial to design metadata processing rules.
Whether the metadata processing rules in PUMP comply with a high-level security properties
needs to be proved. Micro-Policies [4, 24] presented an approach for formalizing and verifying the
IFT policies.
Micro-Policies verification process is shown in Figure 3. To design a set of metadata rules,

first, an abstract machine specification with a set of instructions and information flow policies is
defined, showing the security properties the machine should have. Then, programmers design the
metadata rules (concretemachine), where the information flow policy is implemented into the PUMP
hardware. To reason whether the concrete machine reflects the abstract machine specification, an
intermediate layer symbolic machine is added manually, as shown by arrows labeled (1) in Figure 3.
The Micro-Policies prove the equivalence by backward refinement, which means if there is a state
transition in low-level machine, there exists a corresponding transition in high-level machine.
They use Coq to formally prove whether the concrete machine backward refines the symbolic
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Fig. 3. Micro-Policies verification process.

machine (2), and whether the symbolic machine backwards refines the abstract machine (3). If the
backward refinement verification in both (4) and (5) passes, then the concrete machine has the
security properties of the abstract machines.
The work shows the proof of a variety of security policies, including noninterference, sealing,

compartmentalization, control flow integrity, and memory safety. The whole verification cost about
17.7k lines of code. To apply thismethodology to other architectures, abstract, concrete, and symbolic
machines need to be specified by the designer manually for each architecture. The refinement
proofs depend on the system and also need to be re-done. Currently there is no programmatic way
to generate these from the HDL code. Reusability of this approach is low.
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Fig. 4. Processor cache security verification process using Mur𝜑 model checker.

3.1.2 Cache Verification. Processor caches are integral part of any modern processor. They are
small, but fast memory components that are used to provide quick access to frequently accessed
data. Through a fixed algorithm, the cache logic decides which data to keep in the cache and which
data to send back to memory if a new request comes and there is not sufficient space in the cache.
Memory access timing changes depending on whether a request “hits” or “misses” in the cache.
Based on this timing difference between hits and misses, researchers have presented numerous
side-channel attacks, e.g., [61], that are able to compromise data confidentiality and potentially
leak out cryptographic keys.
In [97] researchers create side-channel leakage models based on the non-interference property

between an attacker and a victim process that are using same processor cache. First, they model the
cache architecture in Mur𝜑 as an FSM with states representing which process is currently using
the cache line and transitions between the states based on cache operations (e.g. attacker cache
hit, victim cache miss, etc.), (1) in Figure 4. By modeling the cache operation and transitions, the
authors were able to obtain probabilities for how different operations of the victim (e.g. cache hit,
cache miss, etc.) are observed by the attacker. Zhang and Lee used Mur𝜑 to enumerate all possible
states and transitions, and count the number of interferences between attacker and victim for
the different state transitions, (2) in Figure 4. Based on this data, mutual information [21] is then
used to quantitatively analyze the interference between the two processes, and reveal side-channel
vulnerabilities, (3) in Figure 4.
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Authors of [97] applied their work to six cache architectures and revealed that most cache
architectures do not satisfy the non-interference property, thus fail the verification. To apply this
method to other designs, designers need to manually create the Mur𝜑 system representation from
the cache architecture description, as there is currently no automated way to extract these models
from the system representation (e.g. from HDL code). Reusability of this approach is low.

System
States

(1)
state and transition

enumeration, 
XOM tag checking

PASS/FAIL

(2)
State

Transitions

Invariants

Murphi

Fig. 5. Process for verifying XOM architecture with Mur𝜑 model checker. Two sets of states and state
transitions are show, corresponding to the “actual” and “ideal” worlds that XOM verification process compares
during verification.

3.1.3 XOM. The eXecute Only Memory [59] is a hardware design with embedded cryptographic
functionality and access control. By adding new hardware and new instructions, XOM is able to
protect user data from a malicious operating system. On-chip data is isolated using hardware tags
which label the identity of the owner of the data, while off-chip data is protected by encryption
and hashing. In [58], XOM was formally specified and then verified in Mur𝜑 .
A model of XOM and its adversary is build in Mur𝜑 as shown in Figure 5. The model of the

XOM hardware contains arrays representing the registers, cache, and memory, including data and
tags; the possible values and states the hardware is modeled as system states, (1) in Figure 5. The
effects of each operation of the processor are represented as state transitions. To model the effect
of the adversary, two identical sets of states are used, dubbed the "actual world" and the "ideal
world". In the actual world, the adversary is modeled by a set of primitive actions she can perform
as state transitions. The ideal world does not include the effect of the adversary. The actual world
states and ideal world states are concatenated, and thus updated together during model checking.
With the model and state transition function, Mur𝜑 is able to exhaustively search for all possible
combinations of these actions. Invariants are defined according to the security properties to be
verified, (2) in Figure 5: to prove the adversary cannot read user data, the model checker verifies
that the on-chip user data is tagged with user’s XOM ID and off-chip user data is always encrypted
and hashed with the user’s key. To prove that the adversary is not able to write the user data
without halting the system, the model checker compares the state of the ideal world against the
state actual world, and thus, knows whether the adversary will succeed.
The authors of XOM, during verification found a replay attack and fixed it. Moreover, it was

shown that if the operating system does not behave maliciously the liveness of the system is
guaranteed. To apply this method to other designs, designers need to manually create the Mur𝜑
system representation for the architecture. Especially, invariants about any tags need to be specified.
Again, there is currently no automated way to extract system models from the HDL system
representation. Reusability of this approach is low.

3.1.4 Formal Foundation of Enclave Secure Remote Execution. Enclave is the special kind of CPU
that is able to maintain a protected memory region and make advantage of this to do operation
or isolation of sensitive code and data. The formal foundation for Secure Remote Execution (SRE)
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of Enclaves[82] provides a framework and methodology to reason about the security guarantees
provided by enclave platforms.
As is shown in Figure 6, first, secure remote execution of enclave is defined. It is used to

provide formal security features to let users remotely outsource the enclave’s execution including
attestation and secure operations of data. Three key security properties that entail SRE are integrity,
confidentiality and secure measurement. Secure measurement allows the user to verify that the
platform is running unmodified enclave programs. The secure measurement property states that
any two enclaves with the same measurement must also have the same semantics: they must
produce equivalent execution traces for equivalent input sequences. Secondly, a Trusted Abstract
Platform (TAP) is introduced to specify trusted primitives of enclaves’ behavior. Along with that a
parameterized attacker model is defined to verify TAP’s confidentiality, etc. Proof is provided that
secure remote execution holds for TAP. In the final step, the ideal TAP is refined and the refined
platform is shown to have equivalent functionality and security compared with some practical
enclaves like Intel SGX and MIT Sanctum. Consequently, these practical trusted hardware platforms
are verified to hold SRE.

All the hardware platform models including TAP, Intel SFX and MIT Sanctum are constructed by
BoogiePL and verified by Z3 SMT solver. This formal foundation is proved to be able to efficiently
and effectively verify SRE of enclaves.

3.2 Approaches Requiring Using Automatic Conversion from HDL to System Models
in Verification Tools’ Languages

To lower the verification efforts, there are attempts to develop tools that automatically convert
designs in HDL to systems models that are used in verification tools. However, the security
specification and proofs still need to be done as verification effort. For certain security properties,
it is possible to automatically generate security specifications and proofs.

3.2.1 VeriCoq. VeriCoq is a tool that provides mechanisms to transform Verilog code into code
with PCHIP (Proof-Carrying Hardware Intellectual Property), which makes it possible to verify
the security of the design written in Verilog [12]. Original VeriCoq supports an essential subset of
Verilog, but requires the design to be flattened and have no nested modules. The newer VeriCoq-
IFT [11] has same constraints, but adds ability to verify information flow properties automatically.
The information flow proofs need “initial sensitivity list" as input and labeling the variables in the
design. Given this input, VeriCoq-IFT automatically creates theorems and proofs for guaranteeing
the information flow property.
The verification process is shown in Figure 7. First, the input is the Verilog code, which is then

converted into Coq by VeriCoq, (1) in Figure 7. Based on the security properties requested, designers
create the theorems to be verified, (2) in Figure 7. With the design represented in Coq, alongside
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Fig. 7. VeriCoq and VeriCoq-IFT verification process. Dashed portion on left-hand side show the VeriCoq-IFT
process that can automatically generate the theorems and the proofs.

with the theorems, developers come up with formal proofs showing that the code has the desired
security properties, (3) and (4) in Figure 7. They can then verify that the design aligns with the
defined security properties by using Coq, (5) and (6) in Figure 7, and either the design passes,
meaning that it conforms the properties, or it fails to pass, (7) in Figure 7.
The advantage of VeriCoq is the automated conversion of Verilog code into Coq. VeriCoq-IFT

also adds ability to automatically generate the theorems and proofs for information flow. To apply
this method to other designs, security properties need to be specified, and the theorems and proofs
developed manually they are not focusing on information flow. Reusability of this approach is
medium.

3.2.2 Formal-HDL. Formal-HDL [45] is a hardware description language in Coq proof assistant.
In [38], a tool is developed to automatically convert design in VHDL to Formal-HDL. Different
from VeriCoq, which only allow a flattened hierarchical design (a one-level design), Formal-HDL
supports instantiation of modules within other modules.

Security 
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(1)(2)
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(4)

(5) (7)

Formal-HDL
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Proofs of
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(6) Coq

Custom
Tool

Fig. 8. Formal-HDL verification process, the lightly shaded portions are not yet done and are presumably
future work of the authors.

The advantage of Formal-HDL is the automated conversion of VHDL code into Coq. Also, it
supports instantiation of modules within other modules. However, currently no actual security
verification is done using the Coq model. To apply this method to other designs, VHDL can
be automatically translated to Coq, but all security verification work has to be done manually.
Reusability of this approach is low (as the current work [45] does not do any actual proofs about
security, just produces Coq model).
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3.2.3 RTLIFT. Information Flow Tracking (IFT) has been widely used to enforce security properties,
such as confidentiality, integrity, and non-interference [73]. To precisely reason about the security
properties in a hardware design, RTLIFT [3] tracks information flow at the RTL level. The RTLIFT
software generates extra IFT logic in the circuit and then, with standard functional verification
tools, it can evaluate the security property (information flow) of the hardware design, i.e. make
sure no 𝐻𝑖𝑔ℎ data flows to 𝐿𝑜𝑤 outputs. After the verification, the extra IFT logic is removed from
the design – so the verification does not introduce overhead into the final circuit design.

RTLIFT PASS /FAIL

(1)
Verilog
Code

 Flow Tracking 
Libraries 

Precision Level
Specification

Simulation /
Verification tools

(2)
IFT Enhanced

Design

Custom Tool Questa

Fig. 9. Flow of the RTLIFT verification process.

To generate IFT logic automatically, flow tracking libraries were developed for Verilog for each
basic module such as a multiplexer, decoder, etc. For each basic module two types of information
flow tracking were considered, along with an associated library: a precise library and a conservative
library. The precise library propagates the security tags of signals in such a way as to minimize
the number of false positives, while the conservative library gives smaller tracking logic with
simple OR expression, but may generate more false positives. As shown in Figure 9 (1), Verilog
code, along with the flow tracking libraries and specification of the desired precision (precise or
conservative), is used by RTLIFT to replace each basic module in the original Verilog code with its
corresponding module from the library that allows for tracking of flows through that basic module.
To deal with implicit information flows in the hardware design code, conditional statements are
treated as explicit multiplexers where security tags of multiplexer control signals propagate to the
multiplexer output. Next, as show in Figure 9 (2), The generated circuit with IFT features is then
feed to simulation and verification tools (Quetsa Formal Verification tool in this case) to analyze
whether unwanted information flows exist. If the circuit passes the verification, then the extra
IFT checking logic that was added can be removed from the hardware design, while the design
maintains its security properties.
Compared to tracking the IFT at the gate level [87], RTLIFT has more information about the

high-level circuit, and thus, can propagate tags faster and more precisely. An RSA core, an AES core
and a bus architecture were verified using this method and hardware Trojans in the designs, which
leaked secret key to output, were detected. To apply this method to other designs, the information
flow libraries can be re-used. Reusability of this approach is medium-high (slightly more reusable
than others so far as design specific theorems or libraries need not be developed if only 𝐻𝑖𝑔ℎ to
𝐿𝑜𝑤 IFT is considered).

3.3 Adding Security Verification Features in HDL
Another approach for security verification is to add security verification features into an HDL,
e.g. by either introducing a new HDL language or introducing new syntax into existing language.
Caisson [56], Sapper [55], and SecVerilog [96] take this approach and introduce information flow
tracking (IFT) features into an HDL language. System designers can use new syntax to specify the
information flow tags and policies in their designs. If the verification passes, then designers know
their designs do not have any information flow violations.
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Caisson
Compilation with

Verification
PASS/FAIL
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(3)

Verilog Code
No Dynamic IFT

(4)

Custom Tool

Fig. 10. Static information flow verification process of Caisson.

3.3.1 Caisson. Caisson [56] is a hardware description language for static information flow verifi-
cation at the design time. The verification process is shown in Figure 10. First, the original Caisson
code is written containing labeling of security tags, especially data ports in a hardware module are
assigned with security labels (i.e. 𝐿𝑜𝑤 to 𝐻𝑖𝑔ℎ), (1) in Figure 10. With the design written in Caisson,
and with the security labels on each register and wires, the information flow can be checked at the
design time by running the Caisson compiler, (3) in Figure 10. During compilation, it is checked
whether the information flow strictly follows the policy that data labeled 𝐻𝑖𝑔ℎ should not end up
in a port labeled 𝐿𝑜𝑤 . If so, there will be no information flow form 𝐻𝑖𝑔ℎ to 𝐿𝑜𝑤 during the system
runtime. The checking is done based on the typed Caisson language and type checking rules in the
Caisson tools. Caisson can generate standard Verilog code as the output as well, with no labels, and
can the code be synthesized using existing tools, (4) in Figure 10, i.e. labels are removed and have no
impact on final design or performance. In the paper, authors use manual proofs to formally prove
that Caisson enforces timing-sensitive non-interference in designed hardware, (2) in Figure 10.

Using Caisson, the authors were able to create the first provably information-flow secure proces-
sor that contains a time-multiplexed pipeline and a partitioned cache [56]. To apply this method
to other designs, the designer needs to augment his or her Verilog code with the security labels.
Reusability of this approach is medium.

Sapper
Code

Proof of Correctness
of Sapper

Sapper
Compilation 

(1)

(2)
Verilog Code with

Dynamic IFT
Checking

(3)

Custom Tool

Fig. 11. Dynamic information flow verification process in Sapper.

3.3.2 Sapper. Sapper [55] is a hardware description language that is based on a synthesizable subset
of Verilog. Sapper compiler automatically ensures non-interference in the generated hardware
logic, and is able to generate Verilog code with added dynamic information flow tags. Figure 11
shows the verification flow.

First, the Sapper code is written, which includes labeling of security tags and in particular input
and output ports in a hardware modules are assigned with security labels (i.e. 𝐿𝑜𝑤 to 𝐻𝑖𝑔ℎ), (1) in
Figure 11. Example of how security labels indicating an IFT policy are inserted into the code in
Sapper language is shown in Figure 12. Sapper’s policy is that the hardware logic should ensure
that data flow to any output port never allows 𝐻𝑖𝑔ℎ data to reach a 𝐿𝑜𝑤 port Especially, in the
presence of an active attacker (e.g. a malicious software in the system), who has full control over
all 𝐿𝑜𝑤 input ports, the non-interference enforced by the policy can protect all the data tagged
with 𝐻𝑖𝑔ℎ. Sapper statically analyzes the hardware logic and automatically inserts dynamic IFT



Survey of Approaches for Security Verification of Hardware/Software Systems 13

Sapper Verilog

check
reg [ 7 : 0 ] a : % ∗ \ h l { L } ∗ ) ;
reg [ 7 : 0 ] b , c ;
a <= b & c ;

reg [ 7 : 0 ] a , b , c ;
reg a_tag , b_tag , c _ t ag } ;
i f ( a _ t ag >= ( b_ tag | c _ t ag ) )

a <= b & c ;

track reg [ 7 : 0 ] a , b , c ;
a <= b & c ;

reg [ 7 : 0 ] a , b , c ;
reg a_tag , b_tag , c _ t ag } ;
a <= b & c ;
a_ t ag <= ( b_ tag | c _ t ag )

Fig. 12. Example Sapper code and generated Verilog code, modeled after [55], with a security label highlighted.

logic and generates Verilog code with extra logic for the dynamic information flow tracking, (3) in
Figure 11. In the paper, authors use pen-and-paper proofs to formally prove that Sapper enforces
non-interference of the generated system, (2) in Figure 10.

Static analysis enables the system to cover explicit, implicit, and timing-based information flows.
With the inserted IFT logic, the synthesized hardware can track and check security policy at runtime,
and any policy violations will be detected. Authors designed a processor simulated the hardware
with ModelSim [40]. A micro-kernel and a compiler were also implemented, and processes in
different security levels could run on the processor. To apply this method to other designs, the
designer needs to write his or her Sapper code with the security labels. Reusability of this approach
is medium.

3.3.3 SecVerilog. SecVerilog [96] is a well-typed language and built on top of Verilog to include
information flow annotations. It is first proposed in [95] to mitigate the timing channel in program
execution. The language semantics can be used to analyze and formally prove the security of the
system.

SecVerilog
Code

Proof of Correctness
of SecVerilog

Verification PASS/FAIL
(2)

(3)

(4)

Custom Tool

SecVerilog
Compilation

Z3

(1)

Verilog Code
No Dynamic IFT

(5)

Fig. 13. Static information flow verification process of SecVerilog.

SecVerilog enables static checking of hardware information flows and uses an SMT checker to
verify non-interference between modules with different security levels. First, the designers define
a security policy, for example, the design has two security levels: 𝐿𝑜𝑤 and 𝐻𝑖𝑔ℎ. The policy may
be such that the adversary, who has access to all information at or below the 𝐿𝑜𝑤 security level,
and can measure the clock cycles of hardware operations, never has access to any data labeled
𝐻𝑖𝑔ℎ. Also, during the implementation of the design in SecVerilog, each variable has to be labeled
with its corresponding security label, (1) in Figure 13. Example of SecVerilog labeling the code
is given in Figure 14. Using these labels, SecVerilog generate models in Z3 for verification, (2) in
Figure 13. Then, in Z3, the information flow is checked, and report is given whether the design
passes or fails the verification, (4) in Figure 13. On the other hand, SecVerilog generate design
in Verilog, (5) in Figure 13. In the paper, authors use pen-and-paper proofs to prove SecVerilog
enforces timing-sensitive noninterference, (3) in Figure 10.
SecVerilog allows sharing of resources within a module. Static labeling does not solve all the

problems of information flow, especially if resources are shared. In the case of shared resources,



14 F. Erata, et al.

1 reg [ 1 8 : 0 ] % ∗ \ h l { \ { L \ } } ∗ ) t a g0 [ 2 5 6 ] , t a g1 [ 2 5 6 ] ;
2 reg [ 1 8 : 0 ] % ∗ \ h l { \ { H \ } } ∗ ) t a g2 [ 2 5 6 ] , t a g3 [ 2 5 6 ] ;
3 wire [ 7 : 0 ] % ∗ \ h l { \ { L \ } } ∗ ) index ;
4 / / Par ( 0 ) = Par ( 1 ) = L Par ( 2 ) = Par ( 3 ) =H
5 wire [ 1 : 0 ] % ∗ \ h l { \ { Par ( way ) \ } } ∗ ) way ;
6 wire [ 1 8 : 0 ] % ∗ \ h l { \ { Par ( way ) \ } } ∗ ) t a g _ i n ;
7 wire %∗ \ h l { \ { Par ( way ) \ } } ∗ ) w r i t e _ en a b l e ;
8
9 always @ ( posedge c l o c k ) begin
10 i f ( w r i t e _ en a b l e ) begin
11 case ( way )
12 0 : begin t a g0 [ index ] = t a g _ i n ; end
13 1 : begin t a g1 [ index ] = t a g _ i n ; end
14 2 : begin t a g2 [ index ] = t a g _ i n ; end
15 3 : begin t a g3 [ index ] = t a g _ i n ; end
16 endcase
17 end
18 end

Fig. 14. Example of the split cache in SecVerilog, modeled after [96], with the security labels highlighted.

the labels might change during runtime. SecVerilog use dependent types to handle runtime label
changes. A design of split cache is shown in Figure 14 as an example. Type changes are detected
and updated dynamically during the runtime, e.g. 𝑃𝑎𝑟 (𝑤𝑎𝑦) in Figure 14. The dependent types can
be determined by type-valued functions: For a variable 𝑣 , the type of the variable can be determined
dynamically during runtime by a function, e.g. 𝑃𝑎𝑟 (𝑣), line 4 Figure 14.

SecVerilogLC [30] extends SecVerilog [96] to allow more sufficient hardware resources sharing
for different security levels. For dependent labels, the information flow control type system along
with syntax and semantics supports signals to propagate on clock edges explicitly. In order to test
next clock cycles’ label, there are also related syntax supported. The type system permits registers
to update values with labels securely and statically. Furthermore, SecVerilogLC explicitly divides
sequential and combinational variables to do corresponding security checks. Following the changes
illustrated above, it is also able to avoid implicit downgrading by explicit implementing it.
SecVerilogBL [31] [32] also extends SecVerilog [96], to support packed data structures, and

downgrading mechanism. It provides an improved type system to cover the extensions. The first
new feature allows complex data structures such as arrays, network packets to be tagged with finer
granularity. That allows tagging of individual elements within arrays or packed data structures.
The second feature supports modifying the security tag of an element dynamically.

A secure MIPS processor and caches were designed in SecVerilog[96] and SecVerilogLC [30].
Dynamic labeling makes the shared ports of the cache possible. SecVerilogBL is used to verify a
secure architecture based on ARMTrustZone which provides isolated memory regions for providing
confidentiality and integrity [31] [32]. SecVerilog also provides timing-sensitive non-interference,
which is proved in the paper [96]. To apply this method to other designs, the designer needs to
write his or her Verilog code with the annotations. Reusability of this approach is medium.

In [95], a well-typed language is proposed to mitigate the timing channel in program execution.
Each command in the program is extended with security labels for confidentiality and integrity,
and a new command “mitigate" is introduced to bound the execution time of another command.
The language made some assumptions on the properties of the underlying hardware. The language
semantics can be used to analyze and formally prove the security of the system. Meanwhile, a secure
hardware architecture satisfying the properties required by the language is designed, explicitly
formalized and experimentally shown to have only moderate overhead.
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3.4 Generate HDL from System Model in Verification Tools
Another approach is to develop a new domain specific language, model and verify the system
using this domain specific language (and associated tools), and then generate HDL. The hardware
designers need to learn and use the new language, but the tools will then automatically generate
HDLs, so there is one-to-one relationship between the code used for verification and the final HDL
code.

3.4.1 ReWire. ReWire [72] is a functional programming language and compiler that translate
high-level designs into HDL description of the hardware. It is a subset of Haskell, which produces a
suitable foundation for writing formal specifications. ReWire enables modular, high-level, semantics-
directed hardware circuit designs.

ReWire
Code

Formal Proof PASS/FAIL

(1) (2) (3)

(4)

VHDL

Security
Properties

(5)

Custom Tool Custom Tool

ReWire
AST

preHDL

Fig. 15. ReWire verification flow

In ReWire, combinational logic is represented by pure, non-recursive first-order functions. The
sequential logic in one clock domain is represented by a structure called “reactive resumption
monad.” This structure uses tail recursive type and functions as a continuation to map an input
to a “new” sequential logic. Monad is the method to produce new type with function of specific
computation by incorporating fundamental data type values in a robust way. More information on
monads can be found in [57]. As shown in Figure 15 (1), to generate synthesizable VHDL code from
ReWire code, first the ReWire abstract syntax tree (AST) is produced by parsing Haskell concrete
syntax. (2) A preHDL is generated by compiling the monadic operations and loop flattening. (3) By
replacing the loop structures with VHDL processes, preHDL can be converted to VHDL.
In a sample dual-core processor with shared register, one core is designated as 𝐻𝑖𝑔ℎ core and

the other is 𝐿𝑜𝑤 . In ReWire, to verify the separation between the two cores as theorems, a formal
proof is written in Haskell, as in Figure 15 (4). The verification precludes storage channels, timing
channels and control flow channels. In the proof, a “harness security” function enables precise
control of information flow.

With ReWire, a single-core processor and a secure dual-core processor based on the single-core
processor were designed and synthesized, showing that ReWire compiler can produce VHDL
implementation from the high-level specification and that it supports modular design. To apply
this method to other designs, the designer needs to write his or her ReWire code and specify the
security properties. Formal proofs have to be done manually but the ReWire AST and preHDL steps
are done automatically, so VHDL will be automatically generated from the ReWire code. Reusability
of this approach is medium.

3.5 Comparison of Verification Focusing on the Hardware Levels of a System
Comparison of Caisson, Sapper, and SecVerilog:
Caisson and SecVerilog only do compile-time IFT checking. Sapper does both compile-time

checking and adds run-time IFT checking into the design, at the cost of extra hardware and
decreased performance. Caisson and Sapper do not allow sharing of resources, while SecVerilog
adds dynamic labels which allow one module to work on both 𝐻𝑖𝑔ℎ and 𝐿𝑜𝑤 data. The static IFT
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checking in SecVerilog makes sure that there is no possible combination of operations or inputs
that would leak the 𝐻𝑖𝑔ℎ data to 𝐿𝑜𝑤 data – the cost is that without run-time IFT, the design has
to be very conservative and consider worst-case scenarios.

Unlike Caisson [56], data with different security labels can share resources in Sapper, e.g. registers,
resulting in a lower overhead.

Table 1. Comparisons of Caisson, SecVerilog and Sapper

Caisson SecVerilog Sapper
Type of Information Flow
Checking Compile-Time Compile-Time Run-Time

Type of Label Static Label Dynamic Label Dynamic Label

Prototype Circuit Time Mux pipeline;
Split Cache, Split Ports

Time Mux pipeline;
Split Cache, Shared Ports

Time Mux pipeline;
Split Cache, Shared Ports

A comparison is shown in the Table 1. Caisson and SecVerilog use compile-time information
flow control, while Sapper uses run-time information flow control. Compile-time information flow
tracking is done at the design time, and does not introduce any run-time overhead for the system.
Also, designers can fix information leakage at design time, and thus do not need to worry about
the effects of security violations at runtime, since no violations will appear then. Compared to
Caisson [56], dynamic labeling in SecVerilog and run-time IFT in Sapper make resources sharing
possible, thereby reducing area and timing overheads.

Table 2. Comparison of verification tools focusing on the hardware levels of a system.

Verif. to HDL Code
Relationship Reusability Source Code Public

Micro-Policies manual low https://github.com/micro-policies
Cache Verif. manual low no
XOM manual low no
VeriCoq programmatic medium no
Formal-HDL programmatic low no
RTLIFT programmatic medium-high no
Caisson programmatic medium https://github.com/vineethk/Caisson
Sapper programmatic medium no
SecVerilog programmatic medium http://www.cs.cornell.edu/projects/secverilog/
ReWire programmatic medium http://mu-chaco.github.io/ReWire/

3.6 Commercial Tools
Even though they are relatively new, there is a number of commercial security verification tools
for hardware design. These tools are quite similar to works in Section 3.2.

Mentor Graphics Questa Secure Check. The application is part of Mentor Graphics Questa package.
It receives RTL data and a spec for secure storage and paths. The spec is defined in TCL language.
Secure Check then finds ports/black box inputs and generates properties for integrity and confiden-
tiality. Black box inputs are generated in a way that it assures that no information flows outside its
designated path. The application then verifies these properties. The output of the application is an
exhaustive proof of integrity and confidentiality of the design and/or counterexamples showing
how your spec can be violated [36].

https://github.com/micro-policies
https://github.com/vineethk/Caisson
http://www.cs.cornell.edu/projects/secverilog/
http://mu-chaco.github.io/ReWire/


Survey of Approaches for Security Verification of Hardware/Software Systems 17

Cadence JasperGold Security Path Verification (SPV) App. Similar to Questa Secure Check, SPV
App takes RTL data and path specs. The user defines illegal sources and destinations of the data. SPV
App proves that the defined secure data maintains confidentiality and integrity during operation
and even after a hardware fault occurs. Verification is performed exhaustively using Jasper’s path
sensitization technology. Path sensitization technology utilizes the path cover property in which
there is a source signal and a destination signal. By proving path cover property, the signal at the
source of the path is tainted. The app formally verifies if it is possible to cover a tainted signal at
the destination. When the property is covered, a waveform displays how data can propagate from
source to destination. The property can also be determined to be unreachable, which means that it
is not possible for data to propagate from source to destination. Verification can also be tuned by
the user by creating black box modules where data can enter or not. This will simplify the process
of verification to scale well [17].

4 SECURITY VERIFICATION FOCUSING ON SOFTWARE LEVELS OF A SYSTEM
The second class of projects that our survey deals with focuses on verifying security properties
of software, while considering the ISA or a machine model of the hardware. Here, we investigate
how the security of software is verified in the literature with a hardware model, e.g., some memory
model, register files, and other components of the hardware that constitute the environment on
which the code will run. Software security verification work that does not consider any hardware in
the verification process is outside the scope of this survey. For software-only security verification,
we refer the reader to the following surveys [8, 35, 71, 79, 90].

The surveyed projects fall in two categories. First, verification with respect to ISA is where the
verification process involves generating assembly code that is considered correct and embodies the
program with desired security properties. Typically, assembly code has one-to-one correspondence
to the ISA thus the verification process ties the software to the hardware ISA level. Second, verifi-
cation with respect to a machine model is where the verification process involves a model of the
target machine, such as the memory, registers, etc. The machine model is typically very simplified,
but it considers key hardware features in the verification process nevertheless.

4.1 Verification with respect to ISA
4.1.1 seL4. [48] was the first operating systemmicrokernel that was formally verified for functional
correctness. The aim of the seL4 verification effort is to provide a system free of programming errors
that introduce vulnerabilities that may cause failures or facilitate attacks. seL4 is a software-only
work and assumes that the underlying hardware, the compiler, and the low-level device driver
code are provided free of errors. It uses capability-based security model [54] for access control
to enable formal reasoning about object accessibility. seL4’s implementation is formally proven
correct against its specification, has been proved to enforce strong security properties.
The verification process is shown in Figure 16. In Figure 16, the system prototype is coded in

Haskell according to a high-level specification (1). The specification includes a detailed functional
and behavioral description of the system (2). Isabelle/HOL theorem prover generates an Executable
Specification out of the Haskell code (3). This process is critical since it will directly impact the
correctness of the system, any misrepresentations can render the verification ineffective. This spec-
ification contains all implementation details and data structures that the low-level implementation
must have. The last layer is the actual C implementation of seL4 (4). These three layers used in the
formal verification are: abstract specification, executable specification, and C implementation, (5)
in Figure 16. The total effort for SeL4 was 11 person years with 14k lines in Haskell/C and 33k lines
in Isabelle. The total size of the proof is 200k including generated proofs.
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Haskell Prototype

Abstract 
Specification

Executable
Specification

Low-Level 
C Implementation

(1)

(3) (4)(2)

Refinement
Proof 

Isabelle/HOL
(5) Pass/Fail

Fig. 16. The seL4 verification process.

4.1.2 CertiKOS and Deep Specifications. [37] presents a design technique based on modern com-
puter system architectures (such as OSes) where each system consists of abstraction levels such as
kernels, hypervisors, device drivers, network protocols. Each hides the implementation through
a definition of an interface. Deep Specifications is based on the verification of abstraction layers
that define interfaces to other layers hiding the implementation details. In mCertiKOS, each layer
represents an abstraction, and its behavior is defined in a specification as shown in Figure 17. These
specifications are called deep specifications and any two implementations that have the same deep
specification must have contextually equal behavior regardless of the implementation method.
Hence, mCertiKOS relies on deep specification of layers rather than their specific implementations
and as long as an implementation of an abstraction layer can be proven to be equivalent to its
deep specification, it can be used without violating the general correctness of the system. An
error-free and functionally-correct implementation of the whole system relies on implementing
the abstraction layers correctly. Unlike seL4 [48], where the whole system is verified at once,
mCertiKOS can be verified layer by layer or as a whole.

Client Program

Layer 1 PASS/FAIL

CompCert x86 Assembly

Layer 2 PASS/FAIL

Deep Spec. of Layer 1

Deep Spec. of Layer 2

Verification

Verification

Fig. 17. CertiKOS verification process.

mCertiKOS uses two core languages for high-level and assembly-level code to describe the
behavior of the system: ClightX and LAsm. ClightX is based on CompCert Clight language [13], a
formally verified optimizing compiler for a large subset of the C99 programming language (known as
Clight), and LAsm is an assembly language customized for CertiKOS development. These languages
can be used to implement abstraction layers. The layer interfaces and Deep Specifications are
described using Coq. mCertiKOS uses the CompCertX compiler for both languages. CompCertX is
a specialized version of CompCert compiler that works with the mCertiKOS memory and machine
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model. If implementations M1 andM2 implement the same DeepSpec, they should have contextually
equivalent behavior. The whole CertiKOS took 11.5 person months to finish.

4.1.3 Verve and Ironclad Apps. Verve [93] is an operating system that is verified to guarantee
memory and type safety. Verve’s architecture consists of two levels. The first level is called the
“nucleus” that implements the core functionality needed to access memory and hardware. On top
of nucleus, there is a kernel level which supports functionality such as preemptive threads. The
applications run on top of these two levels.
Verve uses two strategies to verify the nucleus and kernel. The nucleus is written in Boogie

programming language and verified by Boogie. The code of nucleus is manually annotated with
assertions that include preconditions, post-conditions and loop invariants. Some of the code is
written in assembly and the assembly instructions from the nucleus code are also converted into
Boogie so that they can have the annotations. The kernel ensures type safety using Typed Assembly
Language (TAL) [65] and a TAL-checker [19]. The kernel is written in safe C# and the code is then
compiled to TAL by a special compiler. TAL-checker is used to verify that the assembly code does
not violate the primitive abstractions of the language.

Verve is still an experimental OS which lacks some modern features such as exception handling
and multiprocessor support, and it assumes the hardware is trusted. However, it supports type
safety in the whole OS including the applications. It demonstrates that using automated techniques,
high level code (such as safe C#) can be verified for type safety in assembly level using type-safe
assembly languages (such as TAL). The specification and proof cost 5494 lines of Boogie code, while
the system implementation uses 1377 instructions, resulting a 4× annotation ratio.

Ironclad Apps [42] focuses on the execution of remote applications in a secure and a functionally-
verified manner. Ironclad uses Verve as the operating system. The verification process covers the
code that is executed remotely, the remote OS, libraries, and drivers. Therefore, Ironclad Apps can be
regarded as a multi-level verification system which assumes that the hardware is secure. However,
the BIOS, and peripheral devices can be malicious. Ironclad Apps eliminates data leaks and software
based vulnerabilities. However, it is not designed for hardware-based attacks (side-channels, etc.)
nor denial-of-service attacks.

High Level 
Spec

(Dafny)

Low  Level 
Spec

Implementation 
in High Level

Language
(Dafny)

Implementation 
In verifiable 
Assembly 
Language

(Boogie X86)

Implementation 
İn Machine Code

PASS/FAIL

(1) (2) (3)

(4)

(5)
(6)

(7)
(8)

Verifier

    Compiler

Spec
    Translator

Fig. 18. Ironclad verification process.

The verification process requires an implementation in a high-level language and a high-level
specification of the application code which are written in Dafny [52]. The spec and the code are
handled in parallel. The code is compiled to output assembly code in the BoogieX86 assembly
language (note that the verifier Boogie and the assembly language BoogieX86 are different) [93],
(5), (6), and (7) in Figure 18. Meanwhile, the high-level spec is translated into a low-level spec by a
spec-translator tool, (1), (2), and (3) in Figure 18. The low level spec and assembly code are then
verified together to see if they are functionally equivalent and free of software vulnerabilities. If
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the verifier fails, the process has to be restarted with fixed code and spec. When verification passes
successfully, the assembler and linker tools convert the assembly code into machine code, (8) in
Figure 18.

4.1.4 Komodo. Even though hardware based security mechanisms provide powerful solutions, they
are somehow slower to adapt new changes and to provide defenses for new security threats. For
example, Intel SGX has not been improved to provide defenses against “controlled-channel" attacks
that leaks information using the ability of the OS to observe page faults in enclaves. Komodo [29]
provides a different approach to Intel SGX-like architectures by moving management structure of
enclaves to a privileged software monitor. Komodo is the first formally-verified, software-based
implementation of an SGX-like enclave isolation mechanism [29]. Its design decouples enclave
hardware primitives from security-critical but formally verified software, enabling independent
evolution of the two. It employs noninterference to prove high-level guarantees of confidentiality
and integrity.

The specification of Komodo including its monitor code is then formally proved that it protects
the confidentiality and integrity of enclave code and data from the other software (including
OS and hypervisor) running on the same machine. The proof establishes that enclave state and
out-of-enclave state does not interfere with each other. As in SGX, Komodo does not prove that
user code inside enclave cannot leak information.
The implementation uses the Vale programming language [14], which consists of assembly

language instructions together with annotations, such as preconditions, postconditions, and loop
invariants, that describe the behavior of the instructions. The Vale generates an abstract-syntax-
tree (AST) representation of the instructions and proof about the behavior of the instructions in
Dafny Language [52]. Dafny uses Z3 to verify the proofs generated by Vale. A trusted assembly
printer turns the instruction ASTs into GNU assembly format. A prototype of Komodo has been
implemented in ARM TrustZone, since it is capable of providing its basic hardware requirements.
The hardware specification covers a subset of the ARMv7 architecture.

4.2 Verification with respect to a Machine Model
4.2.1 SecVisor. SecVisor [34, 76] is a hypervisor designed to provide execution and code integrity.
It guarantees that code can execute in kernel mode only if the code is approved by user, and the
code can only be modified by SecVisor. SecVisor leverages hardware memory protections and
kernel privilege level to achieve execution and code integrity. The design assumes that the attacker
has control of everything except the CPU, the memory controller, and the system memory. The
small codebase makes the formal verification of SecVisor possible.

A model in Mur𝜑 is developed to verify the system. The model consists of three parts: a hardware
model, a SecVisor model, and an attacker model. Since the security of SecVisor is based on the
hardware memory protections, it is crucial to specify the hardware model and the page table in the
SecVisor model correctly. The hardware model includes physical memory, CPU mode bits, program
counter, and a Device Exclusion Vector (DEV) that controls DMA permissions. The initialization,
CPU mode transitions, and page-table synchronization in SecVisor are modeled in Mur𝜑 . To deal
with the state space explosion problem, the authors simplify the model conservatively to avoid
false negative. So when Mur𝜑 returns with success, the SecVisor is proved to satisfy all the security
properties.
To model the attacker, an actual model where the attacker behavior is modeled and an ideal

model without the attacker model, akin to the models used in the verification of XOM [58]. In the
actual model, the attacker can write to any memory pages with the permission bits set and can
update page tables. The execution integrity is the equality between the actual model and ideal
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model where the attacker behavior is not modeled. The code integrity means that the attacker
cannot modify the approved code. The execution integrity and code integrity invariants are checked
by the Mur𝜑 model checker. The whole model cost 500 lines in Mur𝜑 , and takes 343.97 s to finish
the model checking for models with 4-page table entries.

4.2.2 MinVisor. MinVisor [23] is a simple hypervisor, which protects its own memory from
malicious guests. This work was presented as a follow-up work on SecVisor, but using theorem
proving approach. The goal of the project is to fully verify the MinVisor at the assembly level using
ACL2. A series of detailed and accurate models of the AMD64 instruction set architecture (ISA),
including the memory model, registers, and state transitions, were developed. Several theorems,
such as the one where isolation of model specific registers and MinVisor memory are guaranteed
against guest modifications, are proved to show the security properties of MinVisor.

4.2.3 AAMP7G. The AAMP7G microprocessor [91] provides “Intrinsic partitioning”, where each
partition has exclusive time slices of CPU execution, and exclusive memory space. The time and
space partitioning is achieved by its “separation kernel” in microcode. To verify separation kernel,
a formal security specification abstractly describing the separation kernel, and a microcode-level
functional design model closely corresponding to the implementation are build in ACL2. The
entire AAMP7G model is about 3000 lines of definitions. National Security Agency evaluation
team conduct a code-to-spec review to validate the microcode-level model. It is then proved that
an abstract model enforces the security specification, and the microcode-level corresponds to the
abstract model. The strict partition is formally verified in ACL2. Furthermore, a formal model of
the instruction set is build, which can be used for analysis of user programs.

4.2.4 Verification of Noninterference at ISA Level. Fox [33], who improved upon work of Myreen,
et al. [66], presented a framework for decompilation of machine (assembly) code into statements
that can be processed by the HOL4 interactive theorem prover. One of the contributions of [33] is
design of a domain specific language, L3, to describe the properties of an ISA. L3 can be converted
to statements which can be processed by HOL4. Another of their contributions is definition of
numerous instruction behavior of ISAs in L3. Later, Schwarz, et al. [75], derive noninterference
properties of ARM and MIPS ISAs using the ISA definitions from [33]. Their framework determines
automatically which system components (e.g. program counter or status registers) are accessible
at given privilege level, based on the ISA definition. Noninterference is proved by checking how
different components (e.g. status registers used by a given instruction) affect state or any return
value of an instruction. For the verification, user has to manually label certain components as
“low”, such as program counter is low. Then the tools check all possible instructions from the
ISA to determine which components can affect the “low” component, and these components are
themselves re-labeled as “low.” At the end, the tools output which components should be considered
as “low”, given the initial specification.

4.2.5 XMHF. XMHF [89] is an extensible and modular hypervisor. The focus of verification is to
preserve the fundamental hypervisor security property of memory integrity (i.e., ensuring that the
hypervisor’s memory is not modified by software running at a lower privilege level). To verify the
memory integrity, security invariants are inserted into the C code as assertions. However, the full
functional correctness is not verified. 5208 lines of the C code is verified automatically by CBMC
model checker [49], while the remaining 422 lines of C and 388 lines of assembly are manually
audited.
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4.3 Tools Automatically Converting Software to System Models in verification tools
Tools are also developed to convert the system implementation and automatically insert assertions
for verification. Many architectures provide security features like isolated memory region, e.g. ARM
TrustZone, Intel SGX, and AMD memory encryption. In the following, there are two examples that
verify the security of application with the security feature provided by hardware.

4.3.1 MOAT. MOAT [81] proposed to find vulnerabilities in enclave user programs that run on
Intel SGX architecture. To protect sensitive data and code from disclosure or modification by
infrastructure attackers (e.g. malicious OS) or other malicious programs, Intel developed Software
Guard Extensions(SGX) [2]. Intel SGX makes such protection possible by providing an isolated
memory region called enclave. The hardware primitives provided by SGX enforce that only the
code inside the enclave can access data within the enclave. However, it cannot protect an enclave
user program from leaking sensitive information from within if the software running in the enclave
is not programmed properly, thus the need for verification.

Boogie
Verifier

PASS
/FAIL

(1)

Annotations
of Secrets
(MOAT)

X86+SGX 
Assembly

(3)
BAP Assembly

+
Havoc Adversary

+
Security assertions

(4)(2)

BAP Assembly

1 lea -0x720(%ebp),%eax
2 mov %eax,(%esp) 

1 eax:=sub(ebp,720)
2 mem:=store(mem,esp,eax)1 Ceax=Cebp

2 havoc mem¬epc
3 eax:=sub(ebp,720)

4 assert ¬Cesp˄(¬enc(esp) ¬Ceax)→
5 Cmem[esp]:=Ceax
6 havoc mem¬epc
7 mem:=store(mem,esp,eax)

Fig. 19. MOAT and SIR verification.

The input of MOAT is the x86+SGX assembly code of an enclave user program, (1) in Figure 19,
alongside with annotations indicating the location of secret data. The usage of assembly code as
input to the verification process eliminates the need for a trusted compiler. MOAT then translates the
assembly code to BAP (Binary Analysis Platform) assembly, which is a simple, RISC-like instruction
set [15], as shown by (1) in Figure 19. MOAT uses BAP assembly for precise modeling of x86 and
SGX instructions in Boogie verifier.
Inside MOAT, BAP assembly and the secret annotations are converted to code with assertions

that Boogie can process. Two kinds of adversaries are considered: active adversaries who can
write to any locations in non-enclave memory and passive adversaries who can read any location
in non-enclave memory. To model the adversary, MOAT introduced a havocing adversary, “who
symbolically modifies all the non-enclave memory after every instruction of the enclave code,
and is able to observe all non-enclave memory." To show the effect of the adversary, a havoc
instruction (havoc mem¬𝑒𝑝𝑐 ) is added before every BAP instruction, (2) in Figure 19. To reason
about confidentiality, ghost variables (𝐶𝑥 ) are also added. If 𝐶𝑥 is true then the data 𝑥 in registers
or memory is dependent on a secret. Based on the value of the 𝐶𝑥 , one can judge whether there
is secret data leaking to non-enclave memory. E.g. line 4 of (2) in Figure 19, asserts data in %𝑒𝑎𝑥
can be written to mem[%𝑒𝑠𝑝] only if %𝑒𝑠𝑝 does not depend on any secret (no control flow), and
if %𝑒𝑠𝑝 is in non-enclave memory (¬𝑒𝑛𝑐 (𝑒𝑠𝑝)) then %𝑒𝑎𝑥 must not depend on a secret. This way,
assumptions and assertions about the ghost variable are added, see (2) in Figure 19. The system’s
security assertions are verified by Boogie verifier (3). If the assertions do not always hold, then
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there is violation to confidentiality, and the verifier returns the violating piece of code, otherwise
the design passes; see (4) in Figure 19.
MOAT provides a methodology to prove the security properties of software developed for the

Intel SGX architecture. Several applications such as One-time password (OTP) service, query
processing over encrypted database are verified as an example. The query processing enclave code,
consisting 575 instructions, needs 9 policy annotations and takes 55 sec to proof. It is also the first
work to create formal a model of Intel’s new SGX instructions.

4.3.2 Verification of user programs in SIR. Another similar work [80] considers the applications
in containers that provide isolation, referred to as Secure Isolated Regions (SIR), such as SGX.
This approach decomposes an application to user code (U) that implement the functionality of
the application and a small runtime library (L) that provides a narrow interface between U and
the untrusted platform outside SIR. The focus of the work is to prove the confidentiality of the
U running in SIR by verifying that U satisfies the “WCFI-RW", which is restriction properties on
reads and writes.

This work first uses compiler to generate machine code of U with runtime checks to guarantee
WCFI-RW. As compiler is not trusted, it can further optimize the runtime checks for runtime
performance. Then the assembly generated from compiler is taken as input to the verification.
Since the verifier doesn’t differentiate if it’s generated from the original user code or belongs to
the runtime checks, compiler can be untrusted. As (1) in Figure 19, to model the x86 and SGX
assembly code, BAP assembly [15] is used. So the U is treated as a set of procedures. There is
also a havoc adversary introduced which controls the host OS, hypervisor, network, storage and
other datacenter nodes. (2), A static verifier generates proof obligations for each instruction in the
procedure by inserting assertions, and (3) these static assertions will be discharged automatically
by an SMT solver, Boogie verifier. Three large MapReduce examples are verified and evaluated. The
overhead of the runtime checks is 15% on average, and the static verification takes less than 20s.
Different from MOAT where annotations from programmer are needed for fine-grained infor-

mation flow tracking in the application memory, this work requires U to perform communication
with outside SIR only through a narrowed constrained interface provided by L, and everything in
U’s memory is considered confidential. This is thus a modular and scalable approach.

5 ANALYSIS OF EXISTINGWORK
Tables 3 and 4 present a summary of the main projects reviewed in Sections 3 and 4. In these tables,
we compare the existing works in terms of their verification methods, the levels they consider in a
system, and the security aspects being verified.

5.1 Verification Methods
Most of the projects use general purpose verification tools, as shown in the Tool column of Tables
3 and 4. The current general-purpose tools used in security verification are not compatible with
conventional hardware or software languages, such as C or Verilog, and verification is performed
as an additional step after design and implementation. Security specifications are described as
formulas in theorem provers like Coq, or as invariants in model checkers like Mur𝜑 , as shown
in the Specification column of Tables 3 and 4. A model (system representation) separate from the
system implementation (actual system) is built, e.g. Micro-Policies [24], Cache verification [97],
XOM [59], SecVisor [34]. Designers have to make sure their model accurately mirrors the system
implementation, otherwise the result of verification might be not correct.

Some projects take the approach of designing new domain-specific languages that allow making
verification an integral part of the design and implementation process. In these projects, tools
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are developed to transform the system description in the new domain-specific language into
another form that is amenable to use with verification tools, e.g. VeriCoq, Dafny, or TAL-compiler.
For example, in Dafny, the code has annotations for pre- and post-conditions, invariants, and
ghost variables. With use of annotations and through automatic transformation SMT solvers can
check if the invariants always hold. Meanwhile, other projects embed security-related tags into
a conventional language, and facilitate describing the security-properties to be verified. These
projects tend to develop custom tools, as shown in Tables 3 and 4 to make sure the generated design
has the desired security properties, such as Sapper [55], Caisson [56], and SecVerilog [96].
Designers should decide which approach to take for their development cycle. On the one hand,

they can develop their system in a “traditional” language. This allows for quick development of the
functional design with tools familiar to engineers, but does incur the effort of having to also separately
write their design in a representation that their preferred security verifier understands. On the other
hand, they can implement their system in a verification-friendly language. This has higher initial
effort, but may pay off in long term with less effort due to not having to write the representation second
time for verification. The drawback is that the verification-friendly language may not support all the
aspects the designer desires to verify.

5.2 Verification Aspects
Confidentiality and integrity are the two main security properties often sought in a system. The
verification aspect of a system often covers these properties, but can be formulated in a more generic
form (e.g. non-interference) or a more specific form (e.g. memory integrity). The formulation of
these properties depends on the levels that the system spans, and on the tools used. The analysis
of information flow provides a useful basis for proving these security properties of a system.
Monitoring information flow requires data labeling, declassification, and information flow rules
specific to the system. We observe that many hardware projects use the analysis of information
flow for proving information flow policies, non-interference, and confidentiality and integrity, as
seen in Table 3. Software projects, as illustrated in Table 4, have a wider variety of verification
aspects, which try to verify confidentiality and/or integrity, but only within the selected levels.
Designers generally try to provide partial integrity or confidentiality for a system. For example,
SecVisor [34] verifies execution and code integrity which is a subsection of the whole memory.
Designers should decide which security aspects to prove in their design, that sit well with both

implementation and verification of the system at the same time.

5.3 Verification Levels
The Trusted Computing Base (TCB) often encompasses multiple levels of the system from hardware
to software. However, as can be seen in Tables 3 and 4, verification projects are typically focused
on the hardware levels, or focused on the software levels. Bringing the hardware and software
levels together is difficult, however, needed. For example, enhancing the security of software levels
by using support in hardware levels is becoming a more viable approach, especially for remote
computing. Hardware based TCBs are emerging quite rapidly, such as ARM TrustZone [88], Intel
SGX [63], and AMD memory encryption[1]. The working of this hardware with software needs to
be verified for security, and requires spanning many system levels.

Designers should consider expanding their approaches to include more levels into security verification,
to allow truly full-system verification.

6 CONCLUSION
Formal verification research has been mostly focused on the functional correctness of the hardware
or software systems. Security verification of software-only is also well studied. Hardware security
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verification, however, is an emerging research area which is necessitated by the fact that modern
systems require both software and hardware for their correct and secure operation. Especially
with introduction of security-focused hardware, such as Intel SGX. Trusting remote software and
hardware is more critical now than before, as it handles users’ ever-increasing sensitive information.
Any vulnerabilities in these computing systems can be exploited by attackers. Thus, the whole
system, including both the hardware and software parts, should be considered in the security
verification.

Security verification is a branch of formal verification where the correctness properties are
extended to include security properties, e.g. confidentiality and integrity. The process requires a
formal specification of the security properties, an accurate representation of the implementation,
and some verification mechanisms, e.g. theorem proving and model checking, to prove that the
implementation complies with the needed security properties.

In this survey, we focused on the security verification projects that involve at least some hardware
and software levels. Since security properties are provided by multiple levels in the system, only
verifying some particular level or levels cannot guarantee whole system’s security. With the
improvement of verification tools and methods, as presented in this survey, there is a trend to
include more and more system levels in verification, but not yet all levels. We provide an insight into
the tools and mechanisms used for security verification, and compare projects based on security
verification of hardware and software levels they consider.

There are many open research topics in the security verification of hardware and software
systems. The most critical, however, is the need for full-system security verification, which spans
more levels than can be done through today’s existing projects.
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Table 3. Summary of projects that focus on hardware verification. These projects were detailed in Section 3.

Name System
representation

Tool Custom
Tool Levels Verification

Method
Verification
Aspect
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RT
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Micro-Policies
[24]

Coq
Language Coq IDE none ✓ Theorem Prover Non-interference,

sealing, etc.
Cache
Verification
[97, 98]

Mur𝜑
Language Mur𝜑 none ✓ Model Checking Confidentiality,

Integrity

XOM
[59]

Mur𝜑
Language Mur𝜑 none ✓ ✓ Model Checking Confidentiality,

Integrity

VeriCoq
[12] Verilog Coq IDE VeriCoq ✓ ✓ Theorem Prover Information Flow,

etc.
Formal-HDL
[38] VHDL Coq IDE VHDL

converter ✓ ✓ Theorem Prover

RTLIFT
[73] Verilog none RTLIFT

Tool ✓ Model Checking Information Flow

Caisson
[56]

Cassion
Language none Cassion

Tool ✓ ✓
Pen-and-paper
Proof Non-interference

Sapper
[55]

Sapper
Language none Sapper

Tool ✓ ✓
Pen-and-paper
Proof Non-interference

SecVerilog
[96]

SecVerilog
Language none SecVerilog

Tool ✓ ✓
Pen-and-paper
Proof Non-interference

ReWire
[72] ReWire Haskell ReWire

compiler ✓ ✓ Theorem Prover Non-interference,
etc.
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Table 4. Summary of projects that focus on software verification with respect to the ISA or machine model. These projects were detailed in Section 4.

Name System
representation

Tool Levels Verification
Method

Verification
Aspect

Verification
Effort

A
pp
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H
yp
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A

𝜇
A
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h

SeL4
[48] C, Haskell Isabelle/HOL ✓ Theorem Prover

Functional Correctness,
Capability-based
Security

200k lines of Isabelle to
verify 8700 lines of C
code in 22 person-years

CetriKOS
[37] Clight, LAsm Coq IDE ✓ ✓ ✓ Theorem Prover Functional Correctness,

Non-interference 11.5 person-months

Verve
[93]

TAL, C#,
Boogie Lang.

Boogie/Z3 verifier,
TAL checker ✓ ✓ SMT solver Type & Memory Safety 5.5k lines of Boogie in

9 person-months
Ironclad Apps
[42] Dafny Boogie/Z3 verifier,

Custom Compiler ✓ ✓ SMT solver Functional Correctness,
Memory Safety

36k lines spec and
proof in 3 person-years

Komodo
[29] Vale, Dafny Boogie/Z3 verifier,

Custom Translator ✓ ✓ SMT solver Non-interference 23K spec and proof in 2
person-years

XMHF
[89] C, assertions CBMC ✓ ✓ Model Checking Memory Integrity 5208 lines of C code

SecVisor
[34] Mur𝜙 Lang. Mur𝜙 ✓ ✓ Model Checking Execution and code

Integrity 500 lines Mur𝜙

MinVisor
[23] ACL2 Lang. ACL2 ✓ ✓ ✓ Theorem Prover Code Integrity 1K lines of binary code

to be verified.
AAMP7G
[91] ACL2 Lang. ACL2 ✓ ✓ ✓ Theorem Prover Non-interference 3k lines in ACL2

ISA
[75] L3 HOL4 ✓ ✓ Theorem Prover Non-interference N/A

MOAT
[81] Assembly Boogie/Z3 verifier,

BAP ✓ ✓ SMT solver Confidentiality a few policy
annotations

Verification of SIR
[80] Assembly Boogie/Z3 verifier,

BAP ✓ ✓ SMT solver Confidentiality less than 20s
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