2025 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

Palermo: Improving the Performance of Oblivious
Memory using Protocol-Hardware Co-Design

Haojie Yet, Yuchen Xiaf, Yuhan Chenf, Kuan-Yu Chent, Yichao Yuanf, Shuwen Dengg,
Baris Kasikci*, Trevor Mudgef, Nishil Talatif
TUniversity of Michigan, USA; {Tsinghua University, China; *University of Washington, USA
Email: yehaojie@umich.edu

Abstract—Oblivious RAM (ORAM) hides the memory access
patterns, enhancing data privacy by preventing attackers from
discovering sensitive information based on the sequence of mem-
ory accesses. The performance of ORAM is often limited by its
inherent trade-off between security and efficiency, as concealing
memory access patterns imposes significant computational and
memory overhead. While prior works focus on improving the
ORAM performance by prefetching and eliminating ORAM
requests, we find that their performance is very sensitive to
workload locality behavior and incurs additional management
overhead caused by the ORAM stash pressure.

This paper presents Palermo: a protocol-hardware co-design
to improve ORAM performance. The key observation in Palermo
is that classical ORAM protocols enforce restrictive dependen-
cies between memory operations that result in low memory
bandwidth utilization. Palermo introduces a new protocol that
overlaps large portions of memory operations, within a single and
between multiple ORAM requests, without breaking correctness
and security guarantees. Subsequently, we propose an ORAM
controller architecture that executes the proposed protocol to
service ORAM requests. The hardware is responsible for concur-
rently issuing memory requests as well as imposing the necessary
dependencies to ensure a consistent view of the ORAM tree
across requests. Using a rich workload mix, we demonstrate
that Palermo outperforms the RingORAM baseline by 2.9, on
average, incurring a negligible area overhead of 5.78mm?” (less
than 2% in 12th generation Intel CPU after technology scaling)
and 2.14W without sacrificing security. We further show that
Palermo also outperforms the state-of-the-art works PageORAM,
PrORAM, and IR-ORAM.

I. INTRODUCTION

Building a secure oblivious RAM (ORAM) design for cloud
workloads is critical because it ensures the confidentiality of
accessing sensitive data. ORAMs are designed to offer a secure
memory access pattern, concealing the information being
accessed and safeguarding the privacy of sensitive data [[16].
This is particularly important in the context of modern Al
workloads (e.g., recommendation and large language models),
where the memory access pattern can reveal sensitive prior
product selections, such as user preferences or prompts to
the language model. ORAM can protect against these po-
tential vulnerabilities by obfuscating the access pattern to
the memory, preventing an attacker from inferring any useful
information about where the data is being accessed.

However, the obfuscation of the memory access patterns
using ORAM incurs a significant performance overhead.
For example, to hide memory access in a 16GB protected
memory space, classical ORAM implementations such as

PathORAM [46] and RingORAM [42] on average convert a
single access to 576 and 470 accesses, respectively. This is
because the critical metadata structure to protect the memory
space PosMap is too large to fit on-chip. Addressing this
issue necessitates a hierarchical ORAM design, often involving
three levels, to establish a mapping between the physical and
ORAM addresses [12]. Therefore, optimizing the performance
of ORAM implementations is crucial for practicality.

Prior works [8], [39], [41]], [50] present ways to optimize
the performance of ORAM by prefetching and eliminating
as many ORAM requests as possible. However, we find two
limitations of these works. First, the benefit of these designs is
highly sensitive to the application behavior, benefiting work-
loads with high spatial locality. They fall short in optimizing
other workloads with low data locality. Second, prefetching-
based optimizations modify the original PathORAM algo-
rithm, which selects ORAM leaves independently and uni-
formly at random. These designs map consecutive physical
addresses in the original memory space to the same leaf in the
ORAM tree. This practice significantly increases the ORAM
stash pressure and introduces background evictions, ultimately
resulting in diminishing returns and a capped speedup at 3.2x
even with a synthetic trace exhibiting perfect locality.

This paper presents Palermo—a protocol-hardware co-
design to improve ORAM performance. The design objective
of Palermo is to enhance performance without compromising
prior ORAM security guarantees [46]. Using the performance
analysis of RingORAM [42], we discover that the average
memory bandwidth utilization of executing RingORAM on the
tested benchmarks is less than 30%. Considering the memory-
intensive nature of ORAM, this is surprising; our further
analysis of reduced bandwidth utilization reveals that enforced
dependencies in the protocol limit memory-level parallelism.

To this end, we design Palermo that re-architects the ORAM
protocol, and designs a novel hardware ORAM controller
architecture to fully unlock the potential of our protocol. The
protocol is designed to improve the concurrency in serving
ORAM requests. In particular, the Palermo protocol intro-
duces intra- and inter-request parallelism to increase mem-
ory bandwidth utilization. Intra-request parallelism involves
overlapping memory requests related to different steps in
accessing various hierarchical levels of ORAM. Inter-request
parallelism entails concurrent processing of memory requests
across distinct ORAM requests. While overlapping memory

requests, the Palermo protocol identifies and enforces minimal
dependencies, ensuring a consistent view of the ORAM tree
after each address remapping.

To support the proposed protocol, we also present the design
of an ORAM controller. The hardware architecture consists
of on-chip memory structures for stash, position map, tree-
top cache [30], and a mesh of Processing Engines (PEs) that
enable concurrent serving of ORAM memory requests. We
present both qualitative and quantitative security analyses of
Palermo to assess the uniform randomness of the attacker’s
view of the DRAM traffic and the isolation of each LLC
miss latency, even when concurrently serving multiple ORAM
memory requests at the ORAM controller.

To demonstrate the effectiveness of Palermo, we use a
wide range of workloads including SPEC17 [3|, graph ana-
Iytics [2], [31]], deep learning [[18]], [[19], [37], and key-value
accesses [23]. Palermo outperforms PathORAM [46] and
RingORAM [42]] by 2.4x and 2.2X, on average. Borrowing
ideas from prior prefetching works [8], [39], [50], we show
that Palermo can further improve this performance gain by
3.2x and 2.9x, respectively. We also show improvements
against PageORAM [38]], PrORAM [50], and IR-ORAM [41]]
while upholding the same security level as in these works.
The performance improvements are attributed to improved
memory bandwidth utilization from 21% in the RingORAM
baseline to 59% in Palermo. Our post-synthesis RTL results
reveal that Palermo only consumes 5.78mm? silicon area (less
than 2% in Intel 12th Gen CPU after technology scaling [48]],
providing a low-complexity practical solution) and 2.14W. The
key contributions of this work are as follows.

o Performance analysis of prior ORAM implementations re-
vealing further optimization opportunities.

o Design of a new ORAM protocol that enables overlapping
memory requests within the same ORAM request and be-
tween multiple ORAM requests.

o Design of the ORAM controller architecture to apply the
minimal required protocol synchronization and improve
memory-level parallelism.

o Palermo: end-to-end protocol-hardware co-design that im-
proves an average performance of RingORAM by 2.9x.

II. ORAM BACKGROUND AND THREAT MODEL
A. A Case For Oblivious RAM/Memory

The evolution of cloud services has facilitated the execution
of applications with exceedingly large memory and computing
demands. While clients enjoy the benefit of using these cloud
services, clients may unintentionally give up the privacy of
running their applications even when data is fully encrypted.
We briefly discuss an example of how an untrusted cloud can
learn sensitive information from clients.

Consider a client executing a Large Language Model (LLM)
inference workload using untrusted outsourced memory to
store the token feature table. The external memory party
(attacker) has the capability to monitor the complete memory
bus and eavesdrop on the memory request traces of the victim.

Even though the transferred feature values are fully encrypted,
the attacker can still observe the full address request trace
and infer about token address and frequency distribution. The
attacker can iterate over common LLM models and map
memory traces to corresponding tokens. In this way, the
attacker can fully reconstruct all the user’s prompts and extract
sensitive knowledge from the user. The aforementioned exam-
ple highlights various recent incidents and concerns related to
corporate information leakage by ChatGPT [20], [35]. Such
outcomes impose a substantial trust burden on the reliance on
third-party cloud memory services.

This calls for an urgent need for privacy in using cloud
memory services. One attractive privacy solution is to use the
oblivious memory protocol (ORAM). ORAM enables the user
to hide the memory access addresses, types, and patterns from
the attacker when using the untrusted cloud memory service so
that their access patterns are computationally indistinguishable
from random accesses. In fact, ORAM has been incorporated
into Signal’s ecosystem [10], facilitating users to conduct
contact discovery while safeguarding the privacy of each user’s
social map through ORAM.

B. Threat model

We model a common scenario that a shared server with
cloud settings is launched to serve remote clients. The server
is equipped with a standalone secure processor, i.e., the
Trusted Computing Base (TCB), that includes cores and a
small amount of on-chip memories. The cloud service can
use any commodity off-chip memory modules and can snoop
the memory bus as an attacker. The processor runs a private or
public program on private data. On LLC misses, the processor
issues to a trusted on-chip ORAM controller to access data in
untrusted external memory. The attacker is “honest but curi-
ous” and uses any possible information to gather insights from
the victim process, such as memory access hotspots, memory
bus contents, timings, etc. Any distinguishable behavior from
the original LLC miss trace is considered an obliviousness
violation [46]. This is a common threat model that is present
in most prior ORAM works [12], [34]], [40], [41]], [50].

C. ORAM Protocol

Many ORAM protocols have been proposed to protect
users’ memory traces [9], [15], [21], [25], [42], [46]. This
work focuses on an optimized protocol RingORAM [42]. Al-
gorithm |1 shows the pseudocode of the RingORAM protocol.
RingORAM manages the untrusted cloud memory as a binary
tree—ORAM tree. Each node in the tree is a bucket and
consists of multiple blocks of data at the cache line granularity.
The blocks are randomly permuted and store up to Z blocks
that contain real blocks, and at least S blocks that contain
dummy blocks. All data is encrypted with different keys. Each
physical address PA in the secure logical memory space does
not directly correspond to PA on the cloud memory; instead,
it maps to a specific leaf (top node) of the ORAM tree. In
the secure domain, the PosMap data structure keeps track
of leaf mappings and the actual node location of every

Algorithm 1 Pseudocode for RingORAM algorithm to serve
an ORAM request.

1: procedure RINGORAMACCESS(PA, op, data’)

2 Global: PosMap: Position map that stores the mapped leaf ID for each PA
3: // PosMap stored in recursive ORAM due to linear size growth with DRAM capacity
4 Global: Stash: Buffer that temporarily stores the data read from DRAM

5: Global: round: Enforces a stash eviction for every A accesses

6: leaf = PosMap[PA]

7: leaf’ = UniRandLeaf

8: PosMap[PA] = leaf’

9: data = ReadPath(leaf, PA)

10: if op == READ then

11: return data to processor from Stash

12: else

13: Stash[PA] = data’

14: if (round++) % A == 0 then

15: EvictPath()

16: EarlyReshuffle (leaf)

17: return

18:

19: procedure READPATH(1eaf, PA)

20: Input: leaf: leaf ID

21: Input: PA: Physical address that misses the LLC

22 Global: NodeMetadata: Keeps track of the ORAM tree per node metadata
23: // NodeMetadata stored in DRAM due to linear size growth with DRAM capacity

24: for all NodeID € leaf along root do

25: i = unused_fake_blk if PA in NodeID else real_blk
26: Stash = Stash U ReadBucket (NodeID, i)

27: NodeMetadata [NodeID] .update ()

28:

29: procedure EARLYRESHUFFLE(leaf)

30: Input: leaf: leaf ID > Check along leaf whether buckets can be further used
31: for all NodeID € leaf along root do

32: if NodeMetadata [NodeID] .accessed == S then

33: ResetBucket (NodeID)

34:

35: procedure EVICTPATH()

36: Global: G: leaf ID to exercise eviction

37: // RingORAM uses a deterministic ring counter eviction leaf sequence

38: for all NodeID € G along root do

39: ResetBucket (NodeID)

40: G = next ring counter

41:

42: procedure RESETBUCKET(NodeID)

43 Input: NodeID: Node ID in the ORAM tree that needs a bucket reset

44 Fetch_offset = NodeMetadata[NodeID].unused_real_blk ()
45 Fetch_offset.pad (NodeMetadata [NodeID] .unused_fake_blk())
46: // Fetched offset size is padded to Z to ensure obliviousness on the memory bus
47: for all i € Fetch_offset do

48: Stash = Stash U ReadBucket (NodeID, i)

49: WriteBucket (NodeID, Stash) > Attempt to push to the ORAM tree
50: NodeMetadata [NodeID] .reset ()

PA, and Stash is a small buffer (of typical size 256) that
holds the blocks streaming from cloud memory to the trusted
processor. RingORAM maintains an invariant that PA in the
logical memory space lies along the path from its mapped
leaf connecting to the root or lies in the Stash.

When LLC encounters an R/W miss on a physical address
(PRn), it queries PosMap to locate the mapped leaf and the
position of the node. RingORAM then loads one block from
each node along the path from the mapped leaf to the root,
generating a stream of memory addresses. Each node selects
the real block if it corresponds to the actual location of PA,
otherwise a dummy block is chosen. All touched blocks are
invalidated for further use (@)). Fig.|1|left shows the example
of LLC missing on the light blue block. After consulting the
PosMap and finding its mapped leaf, exactly one block from
each node is streamed into Stash and it is guaranteed to have
the block of interest and the rest being dummy blocks. After
loading along the path, Stash decrypts the block of interest to

o
&
e
(3]
I
o
(=2}

0x3¢0 3.4 5 6
0x380
0x340
0x300

0x1c0 1 2 0x1c0 1 2 0x2c0
0x180 0x180 0x280
0x140 0x140 0x240
0x100 0x100 5 0x200
xcO XC
0x80 0x80
0 ox40 0 mgm 9 0x40 0 -E-

Fig. 1. A toy ORAM access example for illustration purposes. The shown
ORAM tree has Z and S set to 2. In practice, Z and S are much higher.
On LLC miss on light blue block, the missed physical address is converted
to leaf number to launch accesses along the path and pull blocks into
the stash. Once any node is touched S times, a reset routine is launched.

Check PosMap
VM Load Metadata

Read Path
B evict Path
[IEEY Early Reshufile
IEI Finalize & Return

PosMap2[0x00] [&AEY m EP ER

Read PosMap?[0x00] on-chip

Fig. 2. Hierarchical ORAM memory spaces. Because the secret data
structure PosMap exceeds the on-chip memory capacity, a second-level
ORAM protocol is launched to protect the access to data structure
PosMap. The recursive process continues until PosMap of the protected
data structure can be stored on-chip.

serve the LLC miss, holds the block temporarily, and discards
the dummy blocks. After each access of PA, its mapped leaf
is randomly selected again. If S blocks in a node are marked
as invalid, violating the future read routine due to the absence
of available dummy blocks, the node initiates a reset routine.
RingORAM first loads Z blocks from the node to Stash and
clears the node, then exhaustively iterates through the blocks
in Stash to push them back to the reset node (@). Fig.
right shows the example of LLC missing on the yellow block.
After streaming from the mapped leaf, node O is accessed S
times and thus requires a reset routine. To reset, all blocks
in node O are streamed into Stash before Stash pushes
its content back to the reset node as much as possible. All
block permutations and valid bits are reset afterward. Periodic
eviction occurs after every A ORAM requests, where a leaf
is selected, initiating a reset routine for all nodes along the
path from the leaf to the root. RingORAM provides theoretical
and empirical evidence that the probability of Stash size
overflowing 256 is negligible (< 27103) [42].

D. Practical ORAM Implementation

While protecting a large memory space with ORAM, the
capacity of PosMap typically exceeds the on-chip memory
capacity on a CPU. For example, to protect 16GB user space,
PosMap takes 2GB of capacity to store the leaf mapping
and node position of all data blocks. Hence, hierarchical
ORAM memory spaces are established to access the encrypted
PosMap in the same oblivious access fashion [12]]. In Fig. |ZL
an example is illustrated, wherein an LLC miss occurs for a
0x00 read operation in the protected user space. In response,

the ORAM controller initiates a PosMap check for block
0x00. This launches a sub-ORAM read of the data structure
PosMap at 0x00. The sub-ORAM launches recursively until
the recursive PosMap can be stored on-chip. Only after the
PosMap access, the protocol can find the mapped leaf and
resume the RingORAM algorithm execution.

To distinguish the recursive PosMaps, we name PosMap!
that keeps track of the protected memory space, and PosMap?
that keeps track of PosMap', and so on. Similar to prior
works, we use 3 levels of PosMaps and store PosMap® on-
chip, the same as all prior works [41]], [42], [46]. RingORAM
imposes a dependency between levels of PosMaps and distinct
requests. In other words, when presented with requests R1
and R2 for the protected memory space, RingORAM accesses
recursive sub-ORAMs to fulfill Rl (PosMap?, PosMap!,
Data) first and then proceeds to R2 (PosMap?, PosMap',
Data) in sequence.

ITI. ANALYSIS OF PRIOR ORAM PROPOSALS
A. Analysis of Classical ORAM Implementations

Considering the memory-intensive nature of ORAM, it
might be assumed that it fully utilizes the available memory
bandwidth. Moreover, since RingORAM reduces the number
of memory accesses, one might intuitively expect it to pro-
portionally outperform the PathORAM baseline. However, we
discover that this is not the case. The RingORAM protocol
only marginally outperforms PathORAM by 10% despite a
significant 42% of reduction in the number of accesses.

Fig. 3] shows the performance breakdown of RingORAM
using detailed methodology discussed in §VIIl The baseline
ORAM controller issues all resulting reads and incurred stash
evictions of an ORAM request to the memory controller.
Without waiting for the writes to commit, the ORAM con-
troller keeps issuing the next ORAM request to saturate the
memory controller queues for memory-level parallelism. In
the RingORAM protocol, ORAM requests are served one after
another to avoid a block being read by multiple requests before
being updated. Otherwise, it gives the attacker accurate infor-
mation about the dummy location and violates obliviousness.
For a single request, after selecting the leaf-to-root path, the
request needs to load metadata on-chip to determine which
blocks in the nodes are usable. The data load can only start
after their dependent metadata are loaded. Additionally, the
protocol specifies that Stash can only push blocks to the
ORAM tree after ReadPath and ResetBucket pull all
their required blocks. These requirements introduce substantial
synchronization overhead, as pull requests are held up while
waiting for their dependent metadata to be in place, and the
Stash is delayed until all pull requests are in position.

We refer to the memory controller stall cycles resulting from
these reasons as ORAM-sync cycles. Surprisingly, ORAM-
sync accounts for around 72.4% of the execution time. In
essence, RingORAM dedicates a substantial portion of time
to stalling the memory controller, awaiting the completion
of preceding high-latency pull requests before it can advance
with the protocol. These stalls are inherent to executing the

IN
(=)

Pos2-sync

Posl-dram 2.1 %)

(9.6 %,

w
o

Pos2-dram
8.0 %
Posl-sync (%)

(24.4 %)

o
o

ata-sync
data-dra (25.9 %)

(10.0 %)

BW Utilization (%)
N
o

o

rand

mcf pr lim
(a) Bandwidth Utilization (b) Memory Cycle Breakdown

Fig. 3. RingORAM protocol bandwidth utilization and performance
breakdown. RingORAM incurs less than 30% bandwidth utilization,
which is similar across workloads due to the application of the ORAM
protocol. ORAM-sync overhead accounts for 72.4% of the execution time,
which indicates the memory stays idle and spends most of the time waiting
for long-latency pull requests to be serviced.

RingORAM protocol, even with a multi-issue ORAM con-
troller attempting to saturate the memory bandwidth. Notably,
the average DRAM bandwidth utilization remains below 30%
across all workloads. We additionally provide the approximate
analytical calculation to support the cycle-accurate simulation
results. The DRAM request latency for row-hits and row-
misses are tCL and (tCL+tRP+tRCD), respectively. We find
that 48.2% of the requests are row-hits in RingORAM. Fur-
thermore, the average memory controller queue occupancy
across all channels is 21.1 due to frequent dependency stalls
of the protocol. Using DRAM timing parameters for DDR4-
3200, the average bandwidth we find is 64B x 21.1 /46.9ns =
28.8GB/s (theoretical-maximum: 102.4GB/s): close to 28.1%
bandwidth utilization. Note that despite the varying nature of
these workloads in terms of memory traffic, each LLC miss
request undergoes conversion into a single ORAM request by
mapping to a unique ORAM tree leaf on every occasion. The
homogenization of memory bandwidth utilization occurs due
to applying the ORAM protocol, resulting in indistinguishable
memory traffic across different workloads, thereby achieving
the primary objective of ORAM.

The access to sub-ORAMs accounts for 64.1% of the time,
which is due to the capacity limitation of on-chip structures
(§JI=D). Additionally, the protocol forces these accesses to
issue and complete in order, servicing one request at a time.
This study reveals that there is an untapped potential for
memory-level parallelism in serving different requests because
different PosMaps are protecting different memory spaces.
For instance, concurrently serving accesses R1 PosMap' and
R2 PosMap? does not result in conflicts. No prior work takes
advantage of this optimization opportunity.

B. Prefetch-based Optimization Strategies

To improve ORAM performance, many prior works [39],
[41]], [S0] propose to eliminate ORAM requests. For example,
PrORAM and its variants [8]], [[39], [50] use PathORAM [46],
a prior state-of-the-art protocol, as their baseline. PathORAM
manages the ORAM tree similarly to RingORAM, with a
key distinction being that in PathORAM, a node does not
differentiate between real or dummy blocks. Each LLC miss

[PrORAM [PrORAM w/ Fat Tree
o5t 03 * 100 &
£a3 - hd 75 &R
Egz * 50 Ze
£3 o] £%
E3- RN — — 25 3%
o M - | — o
nopf pf=2 pf=4 pf=8 pf=16

Fig. 4. Normalized speedup of PrORAM and LAORAM (PrORAM w/
Fat Tree) running stm, a synthetic workload where consecutive cache line
addresses are missed subsequently by the LLC. pf=X refers to forcing
mapping to the same leaf for a prefetch length of X. A high dummy
request ratio limits the performance scaling despite the present locality.

on PA in PathORAM results in loading all blocks along
the nodes connecting from its mapped leaf to the root.
Additionally, upon loading from a leaf, PathORAM evicts
the same leaf path immediately. The PrORAM protocol [50]]
forces the mapping of consecutive physical addresses in the
original memory space to the same leaf in the ORAM tree.
This way, one load of a physical address effectively prefetches
multiple data blocks from the ORAM tree to Stash and
then to LLC. Subsequent accesses, if hit the LLC, bypass the
ORAM protocol. This solution achieves a notable speedup by
mitigating the ORAM workload when the original memory
access exhibits high locality.

However, PrORAM optimization suffers from two limita-
tions, which we discuss through qualitative and quantitative
analyses as follows. First, the prefetch performance benefit is
sensitive to the locality pattern. This optimization has little
effect on workloads with low to moderate locality in their
original LLC miss trace such as some SPEC benchmarks, real-
world graph analytics, and random key-value accesses, with
demonstrated in performance evaluation in Second,
forcing the mapping of consecutive physical addresses in the
original memory space to the same leaf in the ORAM tree
limits the scope that Stash can distribute its blocks back
to the ORAM tree. This violates the premise in PathORAM
proof that blocks are assigned “independently and uniformly at
random” into leaves of the ORAM binary tree [46]. As a result,
background eviction is introduced when Stash overflows in
this scenario [43]].

Whenever the Stash size exceeds the threshold, a dummy
ORAM request is inserted to read from and write to a random
dummy path. This path access does not contribute to fulfilling
any LLC requests but only helps to further clear the Stash.
Fig. [4| shows the quantitative results of how these dummy
requests affect performance. The experiment models PrO-
RAM with a 1024-entry Stash protecting stm, a synthetic
workload where consecutive cache line addresses are missed
subsequently by the LLC. Ideally, a higher prefetch length
configured in PrORAM should perform better than a lower
one because the perfect locality of the trace can eliminate
more of the ORAM requests. However, we find that PrORAM
performance does not scale with the prefetch length.

At a prefetch length of 4, although the original ORAM
leaf accesses are reduced by 4x, the Stash pressure has to
repeatedly insert dummy requests, and the fraction of dummy

requests accounts for 77.3% of the total ORAM requests.
This leads to even a slowdown compared to the no prefetch
case. PrORAM proposes to use a threshold to adapt to the
background eviction frequency and dynamically disable or
limit the prefetch length. This achieves up to 1.5x speedup
over the no prefetch case (see Fig. 7 in PrORAM [50]).

LAORAM proposes a Fat-Tree structure to allocate 2x
block size at the root level and gradually decrease the bucket
size going up towards the leaf [39]. This significantly reduces
the Stash pressure and decreases the dummy request ratio.
However, its performance is capped at 3.2x at a prefetch
length of 4 even with perfect locality in stm. Note that LAO-
RAM reports a few over 3.2x speedups in some workloads.
This is because LAORAM uses a software-managed Stash
and allows the St ash to grow above 3600 after 12500 ORAM
accesses and remain unbounded throughout the workload life-
time (see Fig. 8 in LAORAM [39]]). This reduces the dummy
request ratio observed in LAORAM. However, because all
entries in Stash need to be probed on every ORAM access,
a high-performance on-chip ORAM solution requires Stash
to be in hardware and remain small due to the need for area
efficiency and probing with high associativity [30]. Such an
unbounded Stash cannot be justified in a high-performance
on-chip hardware solution.

C. Summary of Challenges Optimizing ORAM Performance

The ORAM performance is limited due to its memory-
intensive nature, where a single memory request in the unse-
cured domain is converted into 100s of memory requests [38]],
[42]. As a response, prior works [8], [39], [41]], [50] attempt
to improve performance by bypassing the ORAM protocol for
a subset of memory requests. While these designs yield some
performance improvement, the benefits are highly sensitive to
workload behavior. Additionally, we uncover that the benefit
of these optimizations does not scale with prefetch length
even with perfect locality due to frequent Stash overflows
and the introduction of dummy ORAM requests. The primary
challenge in enhancing the performance of ORAM lies in
accelerating a broad class of workloads with varying locality
patterns and avoiding dummy requests. Palermo addresses
this open research question.

IV. INTRODUCING CONCURRENCY USING PALERMO
A. Key Design Goals

The primary goal of Palermo is to improve performance by
enhancing the memory bandwidth utilization without sacrific-
ing security. The goals of Palermo design are:

o Simultaneously processing multiple ORAM requests. As
discussed in accessing multiple ORAM requests
concurrently is the key to overcoming the long ORAM
request latency and improving bandwidth utilization.

o Minimizing execution bubbles. Facilitating concurrent access
to multiple ORAM requests necessitates identifying minimal
dependencies between them, as this is integral to achieving
high-performance ORAM while preserving memory func-
tionality correctness and obliviousness.

Data[0x00] WMIEA er ERE

PosMap'[0x00] M er [ER
Posep0:00) @
time (b)

Saved Cycles

Data[0x00] beneng Dependency pyvir=r IR
PosMap'[0x00] cpendersy i re RS
PosMap?[0x00] ce MIEEA EP ER

Check PosMap [SEYN Load Metadata Read Path

E Evict Path E Early Reshuffle Finalize & Return
Fig. 5. Intra-request parallelism in serving a single ORAM request.
PosMap? || PosMap' || Data || PosMap? || PosMap'|| Data || PosMap? || PosMap' || Data

[ox40] || [ox40] |f [ox40]

[0x80] || oxao]

[ox00] || [oxoo

w I

[0x00]

Fig. 6.

Inter-request parallelism in serving multiple ORAM requests.

e No compromise on security. The protocol must be carefully
designed such that any concurrent access behavior does not
compromise the security guarantee of the original protocol.

B. Unlocking Parallelism in ORAM Protocol

To enhance performance, we analyze the minimal dependen-
cies between ORAM requests that the ORAM controller must
adhere to for correctness. We crucially observe that there are
two categories of achievable parallelism to concurrently serve
ORAM requests while ensuring correct functionality.

Intra-Request Parallelism. In Fig. Eka), the baseline
RingORAM protocol serving a single ORAM request of 0x00
with a hierarchical design is illustrated. Each level of ORAM
launches a recursive sub-ORAM to check the PosMap value
of the requested block. We make a crucial observation that
each sub-ORAM memory space is exclusive; in other words,
the ORAM memory space to protect PosMap? is entirely
exclusive from PosMap'. Thus, accesses to one level of sub-
ORAM can be concurrently executed with accesses to another.
Fig. [B|b) shows the minimal dependency that needs to be
respected when serving different sub-ORAMs for a single
request. PosMap! LM step can start as soon as the mapped
leaf is known. This is resolved as soon as PosMap? RP is
completed. The write to PosMap? ORAM tree (EP) and the
read of PosMap! ORAM tree (RP) can be executed in parallel
without any conflicts because they access exclusive memory
spaces. Using these observations, we design the Palermo
protocol that unlocks intra-request parallelism.

Inter-Request Parallelism. Fig. [f(a) shows the baseline
RingORAM protocol serving multiple ORAM requests. As-
suming LLC misses on addresses 0x00, 0x40, and 0x80,
in the baseline, ORAM access to PosMap?[0x00] executes
the RingORAM protocol in order followed by the access
to PosMap'[0x00]; ORAM access to PosMap?[0x40] is

serialized after the access to Data[0x00]. We observe that
sub-ORAMs on the same level (e.g., PosMap!'[0x00] and
PosMap![0x40]) can be concurrently accessed in most condi-
tions, even though they share the same memory space. This is a
distinctive characteristic of RingORAM because the protocol
ensures that it invalidates precisely one data block position
in the node upon being touched, and subsequent access to the
node always selects a different position in the node if available.
This unique characteristic of the RingORAM protocol unlocks
massive opportunities for parallelism. This exclusivity access
guarantee, however, can be violated once the node resets. This
is because the reset operation pushes values from the stash and
alters the content of the ORAM tree, and subsequent requests
must have the updated view of the tree to maintain correctness.
Hence, the modification of the ORAM tree (EP and ER) by one
ORAM request and the read (LM and RP) by the subsequent
request forms the minimal critical section for concurrently
accessing multiple requests on the same sub-ORAM level. The
ER step is executed on every access, whereas EP is executed
after every A access.

To overcome this challenge, we propose to re-order and
hoist the execution of the ER step to the earliest stage
possible. The purpose of this is to resolve the write-to-read
critical section as soon as possible. This approach allows
the current request to modify the ORAM tree at the earliest
opportunity to a “good to read” state and then pass the
tree to the subsequent request. Meanwhile, EP is serialized
after RP to uphold the theoretical guarantee that the stash
remains bound to a fixed size, regardless of the concurrency
order. In Fig. [f[b), our proposed protocol is depicted to
minimize the critical path of concurrently running multiple
requests. Consider the PosMap! ORAM tree, the execution
of PosMap![0x40] can be issued as soon as PosMap! [0x00]
EP stage is complete. The execution of PosMap![0x80] can
be issued once PosMap'[0x40] ER stage is complete. All RP
(non-store) steps from different requests in the same memory
space can also be overlapped, which saves a significant amount
of cycles. This design eliminates unnecessary dependencies.

C. Palermo Protocol Details

Algorithm 2] presents pseudocode for the proposed Palermo
protocol that includes the following changes. First, we ele-
vate the execution order of EarlyReshuffle to preserve
correctness. Second, Palermo protocol serves an arbitrary
number of requests concurrently while using CommitHead
to synchronize the memory serving order to the same order
they are issued. This ensures that using concurrent ORAM
does not introduce any memory consistency issues. For each
request, the CommitHead waits for all previous tree locks to
be released. Then, it locks the ORAM tree until all operations
that possibly modify the ORAM tree finish.

Palermo protocol (Palermo-SW) enables concurrent ORAM
accesses and exploits the inter-request parallelism as multi-
ple ReadPath () can be overlapped. However, the coarse-
grained nature of software synchronization limits the bene-
fit of Palermo. For example, the synchronization primitive

Algorithm 2 Pseudocode for Palermo algorithm to serve
ORAM requests concurrently. Changes are marked in red.

1: procedure PALERMO ORAMACCESS(PA, op, data’, GloballID)

2 Input: GlobalID: Global issue ID when accessing concurrently

3 Global: CommitHead: Synchronization for original memory request order

4 while (CommitHead != GlobalID) {;} > sleep and wait for sync
5: leaf = UniRandomLeaf if PA pending else PosMap[PA]

6: leaf’ = UniRandomLeaf

7: Mark PA as pending

8 PosMap[PA] = leaf’

9: EarlyReshufflePreCheck (leaf)

10: if GlobalID % A != 0 then

11: AtomicAdd (¢CommitHead, 1)

12: data = ReadPath(leaf, PA)

13: if op == READ then

14: return data to processor from Stash

15: else

16: Stash[PA] = data’

17: if GlobalID % A == 0 then

18: EvictPath() »> Remove pending status upon blocks evicted from stash
19: AtomicAdd (&CommitHead, 1)

20: return

21:

22: procedure EARLYRESHUFFLEPRECHECK(leaf)

23: for all NodeID € leaf along root do

24: if NodeMetadata [NodeID] .accessed == S — 1 then

25: ResetBucket (NodeID) > Mark Node as bypassed in ReadPath()

a b
() Core pipeline Core pipeline () Memory
L1/L2 L2 Parent Req. Resolve (N) 1 Hierarch

Last Level Cache

_______________ S | Reg. || Data Buffer | ar
e 3 3)) Py
18 Dep. Meta. Data 3
: 51 | Step? H Clear? || Access || Access |[* ©
s | g
] I Inter PE Msg || XOR Enc/Dec Iogic] o
Untrusted ORAM | [Mesh Network |
Cloud Mem | Controlleri

Child Req. Create (S)

Fig. 7. (a) Palermo ORAM controller consists of a 2D array of PEs,
where each row of PE serves separate hierarchical sub-ORAMs, and
each column of PE serves multiple ORAM requests concurrently, and
(b) a single PE architecture for Palermo.

placed around the PosMap check prevents the intra-request
parallelism. To address this, we present the design of ORAM
controller architecture to exploit parallelism at both levels.

V. PALERMO ORAM CONTROLLER DESIGN

This section presents the hardware design of an ORAM
controller to fully support the memory-level parallelism intro-
duced by Palermo protocol.

A. Hardware Support for Unlocking Additional Parallelism

Fig. [/|shows the proposed hardware architecture of Palermo
ORAM controller. The architecture consists of 3 levels of
Processing Elements (PEs). Each row of PEs serves a separate
protected memory space of Data, PosMap', and PosMap?.
Each column of PEs serves a single request issued from an
LLC miss. For example, three misses will be mapped to three
columns of PEs. Within each PE, the finite state machine exe-
cutes Algorithm [2] independently. Protocol-level dependencies
are managed by the communication with neighboring PEs. The
execution flow operates as follows.

Check PosMap: PE receives the query for PosMap from
the parent (from the north) and sends it to the child (to the

south), awaiting the response from the child to retrieve the leaf
ID mapped to the requested data block.

Load Metadata: PE waits until the sibling dependency from
the west is cleared. PE then loads metadata from the leaf to
the root of the ORAM tree.

Early Reshuffle: Checking the loaded metadata, PE resets all
nodes along the path that need an early reshuffle. After all
reshuffles are issued, it clears the dependency for the sibling
to the east (i.e., ORAM tree is ready for next read).

Read Path: Processing the metadata, PE issues requests and
loads data along the leaf to root, decrypts blocks, and responds
to the parent with the values of the requested block.

Evict Path: If there is an eviction being scheduled, the stash
is re-encrypted and an eviction process is initiated. This clears
the dependency for the sibling to the east.

Finalize: PE is ready to retire and clears up when all rows
(sub-ORAMs) of the same request are finalized.

All PEs execute an identical workflow and concurrently
issue memory requests to enhance bandwidth utilization. The
PE array forms a ring, and once a new request occupies the
left-most PE, the right-most PE sends clear signals to the left-
most PE regarding sibling dependency.

B. A Walk-Through Example

Figure [§] illustrates the proposed hardware’s operation with
a 3x3 PE mesh. Initially, at t = 0, LLC has three outstanding
misses: 0XxO0R, 0x40R, and 0x80R. Palermo controller first
registers all 3 requests in a separate column in Data PE.
The on-chip storage of PosMap' for address 0xOOR is absent,
resulting in the designation of the Data-0 PE phase as CP,
initiating an access to address PosMap![0x00] in the sub-
ORAM. This launches another recursive access, setting the
PosMap!-0 PE the CP phase. This process continues until the
position map is found on-chip at the third level. PosMap?-0
PE accesses this on-chip mapping and progresses to the LM
phase. While this request progresses, other requests are still
stalled at the CP phase. At t = 1, PosMap2-0 PE finishes the
ER phase. This signals the completion of the writing phase
of PosMap?, prompting the transmission of a dependency
clear signal (red arrow) to the PE to the east, instructing
PosMap?-1 to execute LM. As the Palermo protocol ensures
that the subsequent execution of PosMap?2-0 and PosMap?-1
will not access the same address, these two PEs can operate
concurrently. At t = 2, PosMap?-0 completes RP, transmitting
the CP request response to the requester PosMap!-0, while
PosMap?-1 finishes ER, unlocking PosMap?-2 to execute LM.
Note that for PE of request-id being multiples of A, the ORAM
tree write phase is complete only when EP is complete.

The execution frontier moves in a waveform and unlocks
a massive level of parallelism across different requests with
minimal dependencies. At the column level, multiple requests
can issue the time-consuming stage ReadPath () concur-
rently. Upon issuing the ORAM tree modification of the
current request to the memory controller, the neighboring PE
in the east can promptly start issuing DRAM requests without
waiting for the modification to complete. This uplifts the

PECol.# 0 1 2 0 1 2
0x00 0x40 0x80

Userregs 0x00 0x40 0x80

t=0 On-chip PosMap?
Userregs 0x00 0x40 0x80

On-chip PosMap? t=1
0x00 0x40 0x80

t=2 On-chip PosMap?®

Execution Frontier

On-chip PosMap?® t=3

—
Sibling Dep. CIr Parent Resolve

Fig. 8. Palermo architecture walkthrough example.

memory bandwidth utilization rate significantly. At the row
level, different sub-ORAMSs can issue requests at the same
time. When the ORAM tree has completed the ReadPath ()
phase, the parent request can immediately start to issue.

C. Palermo Integration with Prefetching

Inspired by prior works [8], [39], [50], Palermo can also
support prefetching to further improve performance. To enable
prefetching of contiguous data blocks, Palermo maps multiple
data blocks/cache lines to a single Data block in the ORAM
tree. This is achieved seamlessly upon address translation
from Data ORAM tree block accesses in RP phase to a
sequence of prefetch length DRAM accesses, while PosMap!
and PosMap? ORAM tree accesses remain unchanged. As
shown in Fig. [12] Palermo prefetch scheme does not increase
the Stash pressure as opposed to PrORAM and thus elimi-
nates the necessity for injecting any dummy ORAM requests.
Prefetching does not change the Palermo protocol and only
requires a wider Stash design to accommodate wider data
blocks in hardware. Notably, prefetching is not a necessary
design choice, but can be optionally used with Palermo based
on ideas presented in prior works [8]], [39], [50]]. This feature is
configured by the user before execution and is fully decoupled
with the underlying protected workload behavior.

D. Discussion: Comparison with Software-based Parallel
ORAM Protocols

Software-based ORAM optimizations [6]], [45], [49] have
been proposed to query untrusted databases. To unlock parallel
transaction processing for multiple clients, ConcurORAM is-
sues multiple ORAM requests one after the other with “order-
based synchronization” without waiting for their evictions to
be committed. All evictions are tracked in an append-based
log and are processed in the background.

Crucially, ConcurORAM is a software library that adopts
the ORAM protocol algorithm to access an external untrusted
database securely. While ConcurORAM achieves memory

8000
6000
4000
2000

18000
~-6000
4000
2000

More Row Buffer Hits

o
o

8000
6000
4000 4000
2000 2000

° Workload Progress °

18000
16000

ORAM Response
Latency (cycles)

Workload Progress

mcf pr Ilm redis
Row Buffer Hit % 59.57% 59.58% 59.52% 59.53%
Bank Conflict % 37.86% | 37.85% | 37.91% | 37.92%
Mutual Info [0, 1] 0.0051 0.0016 2.1e-7 0.0060

Attacker Observations on Palermo Executing ORAM Among Workloads

Fig. 9. ORAM response latency in Palermo. The variations are due
to the leaf selections, memory controller, and DRAM architecture, all
of which are public information. Quantitatively, the mutual information
in all workloads is shown in the table. The close to 0 result indicates
the attacker’s knowledge gain is no better than random in the original
program by observing the DRAM timings. Qualitatively, this is expected
because all DRAM timings are only determined by the statistically
random leaf sequences, thus fully decoupled with any program behavior.

saturation, it refers to achieving peak performance in software.
In contrast, Palermo designs a novel ORAM protocol and an
underlying hardware implementation to access an untrusted
RAM efficiently. In fact, this co-design unlocks memory-
level parallelism at the memory controller to reduce execution
bubbles and improve DRAM bandwidth utilization.

E. Discussion: Optimizing RingORAM over PathORAM

RingORAM presents major design improvements over
PathORAM to reduce DRAM traffic. Despite the 42% less
traffic, RingORAM marginally outperforms PathORAM by
10% mainly due to the blocking issue nature and frequent
dependency stalls presented in Palermo finds the
unique opportunity in RingORAM to respect the minimal
dependency at a hardware level and exploit higher memory-
level parallelism. PathORAM, on the other hand, does not have
RingORAM’s access exclusivity guarantee that subsequent
accesses always select distinct blocks in a node if available
(§IV-B). Thus, a similar strategy in PathORAM gains lim-
ited performance benefits because PathORAM protocol in its
nature has much higher total DRAM traffic with fewer de-
pendency bubbles, leaving little room for improvement at the
memory controller. §VITI-A| presents the detailed performance
analysis of all studied baselines based on the two protocols.

VI. SECURITY ANALYSIS OF PALERMO

The following qualitative and quantitative analyses show
that Palermo design upholds the same security guarantees as
the RingORAM protocol.

Qualitative analysis. We first qualitatively show that
Palermo’s access traces are indistinguishable. In Palermo, the
ORAM controller issues LLC misses at a constant rate and
pads dummy ORAM requests when LLC issues none, same
as [41]. Each ORAM request P2 in Palermo protected memory
space is mapped to an ORAM leaf. Upon accessing this leaf
as it becomes visible on the DRAM memory bus, Palermo
immediately re-maps the PA to another random ORAM leaf

without revealing it, following the remapping scheme from
RingORAM. Thus, an attacker monitoring the memory traffic
that executes DRAM bus attacks can only infer the underlying
stream of statistically random leaf selections at a constant rate
and the statically configured prefetch length, both of which are
uncorrelated with the original program behavior. In conclusion,
Palermo follows the same level of security guarantee as
RingORAM in hiding the memory access patterns.

Quantitative analysis. Palermo’s distinct characteristic
from other ORAM optimizations is that it overlaps multiple
ORAM requests. Palermo supports overlapping ORAM re-
quests rooted from LLC misses issued by different processes
(such as concurrent KV access in redis or token feature table
accesses in llm among different users) for better resource
availability in the cloud settings. While overlapping ORAM
requests incur sharing of the ORAM controller and may
interfere with other requests, we quantitatively show that
Palermo by design ensures isolation of service latencies at the
ORAM controller of each LLC miss. Fig. [0 shows the analysis
of ORAM response latencies for four workloads - mcf, pr,
lIm, and redis. These figures clearly show that the access
latencies are closely clustered together. This is because ORAM
requests are issued at a constant rate and once an ORAM
request is issued at the ORAM controller, it always attempts to
issue DRAM requests at its earliest time of resolving protocol
dependencies and contend the memory controller with a fixed
number of ORAM requests before its issue. Thus, the response
latency of any ORAM request is a deterministic function of
a constant number of uniformly random leaf selections before
issue, leading to fully decoupled behavior of LLC misses,
regardless of which process launched it.

Note that all the access latencies cannot be identical due to
the hardware architecture of memory controllers and DRAM.
However, the variance due to this does not render a design in-
secure as it is based only on the public information, including
the memory controller design, DRAM access protocol, and PA
to ORAM leaf mapping (which is decoupled from PA as this
is remapped randomly at each access). For example, modern
memory controllers reorder requests to exploit bank-level
parallelism and row-buffer locality in DRAM. This always
leads to variations in DRAM response timings, and hence
ORAM response timings. Palermo design does not affect this
behavior. For the evaluated workloads, about 59% of DRAM
requests in Palermo access an already open row leading to
lower latency, versus 37% of accesses that require precharging
a row and activating a new row leading to higher latency. The
similarity in these statistics for different workloads is owing
to the ORAM protocol (similar to Fig. a)).

p1 2p1 D2 2p2
M = =logy——— + Zlogyg ——=—
2 92P1 + p2 2 92}71 + p2
1-— 2(1 — 1-— 2(1 —
Llenyg (1—p1) 2200 (1—p2)
2 2 —p1—p2 2 2—p1 —p2 "

TABLE I
PROBABILITIES OF DIFFERENT VICTIM BEHAVIORS B AND ATTACKER
OBSERVATIONS O.

Attacker’s
observation O

Longer timing Shorter timing
s Requested block
Victim’s is in the Stash P 1-p1
behavior
B Requested block 1
is in the ORAM Tree p2 P2
TABLE II
REAL-WORLD SERVICES THAT DEMAND OBLIVIOUSNESS.
Category | Workload Name [Description
SPEC17 mcf (mcf) Route planning computation [3]
Ibm (Ibm) Fluid dynamics computation [3]
Graph PageRank (pr) Score ranking [2] on Livejournal [1]]

Motif Mining (motif)
DLRM(MemBound) (rm1)
DL DLRM(Balanced) (rm2)
Large Lang. Model (Iim)

Redis (redis)
KV Streaming (stm)
Random (rand)

Graph mining |31 on Wikipedia [26]
Meta RM [18], [19] on Criteo 1T [22]
Alibaba RM [54] on DBLP [44]
GPT-2 [37] on OpenORCA [27]
Redis KV access [23]
Streaming memory access
Random memory access

We further use mutual information M [11], [17] between
victim behavior B and attacker observation O to quantify
the amount of information about the response latency that
an attacker can gain. From the potential attacker’s sample
of its access latency, we model the attacker’s best guess
about whether the victim’s behavior hits the attacker’s past
access address is based on whether the access latency is
lower/higher than the median observed latency. Using Table.
Equation |l| and experimental measurements, the calculated
mutual information M in these workloads is close to 0 (see
table in Fig. [9). M close to 0 indicates that p1, p2 ~ 0.5: the
attacker observes longer and shorter than median timings with
almost 50-50 probabilities. Therefore, the potential attacker
cannot extract any information gain about the private program
behavior out of Palermo.

VII. EVALUATION METHODOLOGY
A. Real-World Cloud Services

We use a variety of cloud services for evaluation as shown
in Table [l The goal of ORAM is to hide the user’s sen-
sitive access patterns, such as accessed node IDs in graphs,
item embedding IDs in deep-learning-based recommendation
models (DLRMs), and token IDs in large language models
(LLMs). We measure up to SOM ORAM requests in the
protected memory space and use the first half of the execution
as a warmup, which translates into more than 3B memory
instructions to the untrusted cloud memory.

B. State-of-the-art ORAM Baselines

PathORAM [46] is a widely adopted protocol that achieves
low algorithmic complexity and small on-chip requirements.

RingORAM [42] builds on top of PathORAM with significant
bandwidth improvement.

PageORAM [38] uses PathORAM as the base protocol and
introduces sibling node accesses. Sibling node accesses can

TABLE III
PALERMO SYSTEM CONFIGURATION.

System Component H Modeled Par ters

Host processor 32-000 cores, 4-wide issue, 2.66GHz frequency,

128-entry ROB, 3-level inclusive cache hierarchy

L1 cache 32KB private per core, 4-way associative
L2 cache 256KB private per core, 8-way associative
L3 cache 8MB shared cache, 16-way associative

Protected memory space
Tree-top caches [30]

16GB user data protected
24 x banks of 32 KB scratchpad (3x256 KB total)

PosMapdb 16 X banks of 1 MB EDRAM (16 MB total)
Stash?, Stash!, Stash? 3% cache bank of 16 KB SRAM cache (48 KB total)
PE layout 3 (row) X 8 (column) PEs, 1.6GHz frequency

Outsourced DRAM 4-channel DDR4-3200, 102.4 GB/s peak bandwidth

expand the options for a block’s residence and capitalize on
the row buffer locality associated with accessing the nodes in
PathORAM. The size of tree buckets can be reduced in this
way, thereby reducing the overhead of each ORAM access.
IR-ORAM [41] uses hardware to keep track of the tree-top
cache blocks’ PosMap mappings. When IR-ORAM detects
the accessed block hits in the tree-top cache, the accesses
to the recursive PosMap ORAM are bypassed. Additionally,
IR-ORAM shrinks the bucket size in the middle part of the
ORAM tree to reduce the overhead of each ORAM access. IR-
ORAM is similar and outperforms an early work Rho [34]. We
use IR-ORAM to represent this optimization idea.

PrORAM [50] and its variants [8]], [39] use prefetch to
eliminate ORAM accesses (see §III-B). The performance is
measured after sweeping for best-performing prefetch lengths
with Fat-Tree optimizations [39].

C. Simulation Parameters and Infrastructure

Table [L1I] shows the modeled system configuration. Similar
to prior works, Palermo uses 3 levels of sub-ORAM trees.
The protected user memory space is 16GB. We use 256 KB
tree-top caches, and 16KB stash for each level of sub-ORAM,
the same cache size provision as prior works [41].

To accurately estimate the performance of Palermo, we
implement a detailed two-phase simulation methodology. First,
we model all hardware components (except caches) using
System Verilog HDL. We synthesize this design using a com-
mercial 28 nm technology library using the Synopsys Design
Compiler. Using detailed post-synthesis RTL simulations, we
extract the critical path delay of our circuits and set Palermo
clock frequency at 1.6 GHz. Additionally, we collect the power
and area numbers using RTL. We use CACTI [33]] to estimate
the performance/power/area of SRAM caches. Second, to
model DRAM performance, We utilize the widely-used, cycle-
accurate Ramulator [24] to model DRAM. We additionally
model the cycle-accurate behavior of the Palermo controller
at the front end of the Ramulator, interacting with Ramulator
memory events. To measure the effect on end-to-end perfor-
mance, we use Sniper [S[]. This simulator faithfully models
all system components. We validate the simulator’s function-
ality by comparing its memory traces with Palermo software
version to ensure the absence of missed events. Palermo is
open-sourced at https://github.com/Linestro/Palermo-ORAM.

VIII. EVALUATION RESULTS
A. Performance Analysis

Palermo versus prior works. Fig. compares the
end-to-end performance of Palermo with the state-of-the-art
ORAM optimizations. In absolute numbers, Palermo issues
and resolves at 3.8E6 LLC misses per second and RingO-
RAM is at 1.7E6 LLC misses per second. The proportion of
dummy ORAM requests becomes negligible after the warm-up
phase. Given the fully DRAM-bound execution after applying
ORAM, the DRAM-bound execution in nature diminishes the
need for dummy requests when all benchmarks execute with
ORAM. Palermo achieves an average of 3.2x and 2.4Xx
speedup with and without prefetch over PathORAM while
RingORAM, PageORAM and IR-ORAM achieve 1.1x, 1.2x,
and 1.1x. PrORAM achieves superior performance by avoid-
ing the ORAM protocol for a subset of memory requests when
their data is prefetched and is present in LLC. This is further
evident by observing a stark performance difference in stm and
rand, where PrORAM achieves suboptimal performance for
workloads with little to no spatial locality. Palermo-SW shows
the 1.2x protocol-level-only speedup over PathORAM with
software mutex synchronizing the inter-request parallelism.
Palermo shows an additional 2.6 x performance brought by the
co-designed hardware. The overall design aspects contribute a
total of 3.2x to performance gain.

The performance improvements of Palermo are attributed
to unlocking massive opportunities for parallelism. The per-
formance gains of Palermo can be further illustrated using the
results in Fig. [TT] This figure compares the bandwidth utiliza-
tion and average number of outstanding DRAM requests in the
memory controller. For better illustration, we show Palermo
without prefetch such that the total DRAM traffic is identical
between RingORAM and Palermo. Using Palermo protocol-
hardware co-design, multiple requests can be issued to the
memory controller as soon as their minimal dependencies are
met. Therefore, the average number of outstanding DRAM
requests in Palermo increases by 2.8, which translates to a
2.2x improvement in the memory bandwidth utilization.

To compare the prefetch effect, we sweep the best perform-
ing prefetch length for PrORAM for each workload, and apply
the same prefetch length for Palermo. This ensures the LLC
miss traffics are the same after prefetch filtering between PrO-
RAM and Palermo for a fair comparison. Palermo outperforms
PrORAM by 1.9x due to better memory-level parallelism and
no background eviction incurred by Stash pressure.

Note that the bandwidth utilization remains consistent
across various workloads. Our chosen workloads represent
a wide range of popular applications and exhibit diverse
memory behaviors in the absence of ORAM. The uniformity
in bandwidth across these workloads stems from applying the
ORAM protocol. Each memory address is mapped to a random
leaf on the ORAM tree on every access. This consistent
behavior on the memory bus illustrates how ORAM effectively
obscures memory access patterns from potential attackers.

Bounded stash size in Palermo. Stash overflows lead to

https://github.com/Linestro/Palermo-ORAM

o ’; [PathORAM [0 RingORAM EEE PageORAM [EEE PrORAM [IR-ORAM [Palermo-SW [Palermo EEE Palermo+Prefetch
C~ 5
Yoz
033
£B2-
T ol -
c
w 3‘0 mcf Ibm pr motif rml rmz2 IIm redis stream random
Datasets

Fig. 10.

End-to-end performance improvements while executing a variety of cloud service benchmarks with RingORAM [42], PageORAM |[38],

PrORAM [50], IR-ORAM [41], Palermo software only version, and Palermo normalized to PathORAM performance. Higher is better. PrORAM
performance is measured after sweeping for the best-performing prefetch length with Fat-Tree optimizations. Palermo+Prefetch always applies the
same prefetch length as PrORAM selects in each workload such that LLC miss traffics are the same.

[RingORAM @3 Palermo

370 708 8
£Z60 — — — —r
3550 ad » » » 50% 3
5240 / / 7 4059

% 30 / / / / 300
5N e [[& #Z
© =20 ¢ ¥ ¥ X% 20% %
@5 10} ‘ ‘ ‘ 10 D

E] | | | |]
0 - 0 29

mcf pr IIm redis
Fig. 11. DRAM bandwidth utilization comparison and average number

of outstanding DRAM requests in RingORAM and Palermo without
prefetch optimization. Palermo architecture improves parallelism and
enqueues 2.8x more outstanding requests on average in the memory
controller, resulting in a 2.2x higher DRAM bandwidth utilization.

) mcf pr lIm redis

N

n On-chip stash capacity = 256

£ 250 =TT e e e e e

0

ol

e

U 200 T == e X e e 1

(=)}

£

B 150 === e e e e e e

g 0 10 20 30 40 50 60 70 80 90 100
% of Program

Fig. 12. Palermo stash utilization over time while executing various

workloads. The empirical result shows that even with the introduction
of concurrency with Palermo, the stash utilization is bounded.

background evictions, which adversely affect the performance
of the ORAM protocol. A high-performance on-chip ORAM
controller solution must achieve a negligible probability of
overflowing even with a small stash (e.g., < 27193 in RingO-
RAM with a 256-size stash). One of the key design goals
of Palermo is to improve performance with a bounded on-
chip stash and avoid dummy requests. Therefore, we study
the occupancy of the stash in Palermo. Palermo protocol
synchronizes the EP phase after the RP phase to provide a
theoretical bound of the stash size while concurrently serving
requests. Fig. [I2 shows the sampled maximum stash size after
every 1% progress during the execution of mcf, pr, lIm, and
redis. For the represented benchmarks, the maximum stash
size throughout the program execution is 234, 237, 228, and
236. This empirical result shows evidence that the intelligently
designed Palermo protocol and hardware architecture maintain
stash boundness and improve performance.

[PathORAM
[T Palermo nopf

1 Palermo pf=2
[Palermo pf=4

[Palermo pf=8

=E

®33

ED 1 — e e

H [I — L

Za, [N I]
mcf pr IIm redis

Fig. 13. Performance sensitivity of Palermo with different prefetch

lengths. pf=X refers to converting Palermo Data ORAM tree block
accesses in RP phase to a sequence of X DRAM accesses.

X 2.00 X2s
LR W e
W 2.0 fmmmmmmmee —___

i 1.50 F=======———————S===s 4----- =

> s

g 1.25 F==-=-=---=-[f===c4 e A===== - L5 -==-1 7

) s

H 1-00~-]—|- ------ T T H 2ol

:','0.75 - - y - a I—I - v v v v

4 8 16 32 w 1 2 4 8 16 32
(a) Sweep Z (b) Sweep PE

Fig. 14. Palermo performance sensitivity study with respect to (a)

ORAM protocol parameter Z, and (b) the number of PE columns in
Palermo architecture.

B. Palermo Performance Analysis with Prefetching

Fig.|13| shows Palermo performance study of representative
workloads with different prefetch lengths. For SPEC, Graph,
and KV access workload with moderate locality, Palermo
performance only moderately changes and consistently out-
performs PathORAM when switching prefetch length from 1
to 4. Thus, Palermo performance is not critically dependent
on selecting the best prefetch length. For embedding access
workloads, selecting prefetch length closing to the size of
an embedding row offers maximized benefits. When config-
ured with prefetch length of X, Palermo Stash contains
X cachelines for each SRAM entry. Thus, the amount of
data in Stash grows by the dimension of X. However, the
number of Stash tags remains bounded and stays below 256,
regardless of the prefetch length. This is because Palermo
prefetch strategy does not change the protocol algorithm of
handling blocks but only magnifies the block size by a factor
of X in Data ORAM tree.

C. Sensitivity Analysis

ORAM Protocol Design Parameters. Palermo offers a
rich protocol parameter sweep including the number of real
and dummy blocks (Z, S) per node and eviction frequency

iy Component mm? Area m

N Control Logic (24x) 0.22 25.8
Address Generation (24x) 0.13 38.6
PE data buffer (24x) 1.05 1709
Stash (3x, shared) 0.1 25.6
Treetop Cache (3x, shared) 1.33 240.9
Mesh Network (1x, shared) 0.05 58.1
PosMap? (1x, shared) 2.89 42.9
Total 5.78 mm? 214W

Fig. 15.
Palermo. Power is measured at 1.6 GHz.

A single PE layout, area, and power analysis of the entire

A. We sweep all valid parameters shown in [4], [42]. Fig. ﬂ_T[a)
shows the memory throughput of different protocol parame-
ters. Interestingly, Palermo exploits more benefits from larger
(S, A) because they create fewer write barriers for concurrent
serving of multiple ORAM requests. With larger (Z, S, A)
Palermo achieves up to 1.8 performance over (4, 5, 3) with
the same capacity of protected memory space. Larger A can
create a higher pressure on Stash to store more blocks
temporarily. Palermo adopts (16, 27, 20) configuration that
can accommodate a modest stash size of 256 blocks.

Number of PEs. To demonstrate the performance sensitivity
of Palermo architecture, Fig. [T4(b) shows the performance of
executing rand sweeping PE array size from 3x1 to 3x32.
With fewer PEs, the workload is bound by structural hazards,
instead of real dependencies between concurrent requests.
Adding more PEs enables increased concurrency in issuing
ORAM requests. Our evaluation shows that with 3x8 PEs,
the workload starts to saturate the memory bandwidth and
achieves 2.2x memory throughput over 3x 1 PEs.

D. Area and Power Analysis

Fig. [13] shows the layout of a single PE, area, and power
estimates for a full Palermo ORAM controller design. The
power results include both leakage and dynamic power con-
sumption. The dynamic power is averaged over all workloads.
The table shows that Palermo consumes an area of 5.78mm?
and 2.14W. A majority of this is consumed in on-chip tree-top
caches and PE data buffers. A 2D pipeline of PE buffers is the
key component of Palermo architecture to unlock memory-
level parallelism by issuing concurrent request. The tree-
top cache [30] stores the bottom level of the tree, which
exhibits the highest access intensity. Therefore, the share of
their area and power is justified. In comparison, the past
FPGA work [[13]], [30] Phantom operates at 200MHz and takes
more than 20mm? using at least 5% of the logic cells in
high-performance Virtex-7 FPGAs. Other works optimizing
ORAM [39]]-[41]] do not report area and power numbers. To
compare, Palermo offers a high-performance on-chip ORAM
controller solution that serves LLC misses obliviously and in-
teracts with DDR memory at 1.6GHz. Palermo takes 5.78mm?
area in 28nm technology and consumes 2.14W at 1.6GHz
operating frequency.

IX. RELATED WORK

Memory-level parallelism in ORAM. To enhance DRAM
throughput of the ORAM protocol, prior works [4], [7],
[14f, [36], [47], [51], [52] implement on-chip and mem-
ory controller-level optimizations. They result in sub-optimal
speedup because they strictly serve ORAM requests one
after the other. Palermo addresses this aspect by proposing
an optimized protocol and hardware architecture to overlap
multiple ORAM requests and improve performance.

ORAM capacity utilization optimizations. PathORAM
uses 50% of capacity to store dummy blocks [46], while
RingORAM has an even higher dummy block percentage [42].
AB-ORAM [40] observes that RingORAM has many invalid
blocks during the execution that can be recycled. To recycle a
block, AB-ORAM allocates blocks at a remote bucket that are
marked as invalid. Cao et al. [4] applies ’green blocks” that
can reduce the block count in each bucket to save memory
capacity. Palermo is orthogonal to improving capacity.

Other oblivious approaches. Private Information Retrieval
(PIR) [28], [29], [32], [53]] is an orthogonal approach to
ORAM. PIR keeps data blocks static and hides the target of
each query using costly homomorphic encryption.

X. CONCLUSION

To optimize ORAM performance, we introduced Palermo,
a protocol and hardware co-design that enables the concurrent
processing of multiple ORAM requests to maximize memory
throughput while preserving ORAM correctness and security
guarantees. Using a diverse workload mix, we demonstrated
that Palermo achieves 2.9 x performance on average compared
to a RingORAM baseline, with a negligible area overhead of
5.78mm? on a CPU, without compromising security.

XI. ARTIFACT APPENDIX
A. Abstract

This paper presents a protocol-hardware co-design to im-
prove ORAM performance. Palermo introduces a new protocol
that overlaps large portions of memory operations, within a
single and between multiple ORAM requests, without breaking
correctness and security guarantees. Subsequently, we propose
an ORAM controller architecture that executes the protocol to
service ORAM requests.

This document briefly describes how to reproduce the
main result of our paper. Our instructions include 1) how to
download the code repository, 2) how to compile and run
the script, 3) how to reproduce the Fig. [I0] in the paper.
Expected result: Generated performance figure showing that
Palermo can achieve performance gain by 3.2x and 2.9x over
PathORAM [46]] and RingORAM [42]], respectively.

B. Artifact check-list (meta-information)

e Program: c++ and python3

o Compilation: g++ 9.4.0

o Dataset: The evaluated workload LLC miss traces are in-
cluded within the code repository. The evaluated datasets are:
mcf (mcf), Ibm (Ibm), PageRank (pr), Motif Mining (motif),
DLRM(MemBound) (rm1), DLRM(Balanced) (rm2), Large

Lang. Model (lim), Redis (redis), Streaming (stm), and Ran-
dom (rand). See Table. [II] for details.

« Run-time environment: Implementation should run natively.

« Hardware: CPU

« Execution: Bash script for automatic compilation and execu-
tion.

o Output: The reproduced Fig. [10|in the paper.

o Experiments: Different ORAM technique performance on
executing different workloads.

o How much disk space required (approximately)?: 10GB

« How much time is needed to prepare workflow (approxi-
mately)?: 10 minutes

« How much time is needed to complete experiments (approx-
imately)?: 20 hours

« Publicly available?: Yes

o Code licenses (if publicly available)?: MIT License

C. Description

1) How to access?: The artifact code base can be down-
loaded from |https://github.com/Linestro/Palermo-ORAM/.
The README file in the root directory of the Palermo
repository contains instructions to reproduce Fig.

2) Hardware dependencies: any commodity CPU should
be adequate for running the code implementation.

3) Software dependencies: we use python3.9 and g++
9.4.0 on Ubuntu 20.04.5 LTS (GNU/Linux 5.4.0-135-generic
x86_64). It is possible to run on a different Linux distribution
with other python3 versions and g++ versions, but we did not
test on other environments.

4) Datasets: We use real-world workloads for evaluation.
The applications are run through Sniper [5] to generate LLC
miss traces.

D. Installation

Download the Palermo code base from https://github.com/
Linestro/Palermo-ORAM/.

E. Experiment workflow

Due to the large number of commands, please refer to
Palermo—ORAM/README.md for the commands for each
step to run.

Step 1: Generate Palermo main results (6 hours).

Step 2: Generate Palermo software only results (2 hours)
Step 3: Generate RingORAM results (2 hours)

Step 4: Generate PrORAM results (6 hours)

Step 5: Generate other baselines (4 hours)

Step 6: Plot results in the paper (1 minute)

F. Evaluation and expected results
After the scripts have been completed running, the raw

results are in *_results/. The reproduced figure is in
Palermo-ORAM/fig/, and it should be the same as the

Fig. [T0] in the paper.

[1]

[2]
[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group
formation in large social networks: membership, growth, and evolution,”
in Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2006, pp. 44-54.

S. Beamer, K. Asanovi¢, and D. Patterson, “The gap benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

J. Bucek, K.-D. Lange, and J. v. Kistowski, “Spec cpu2017: Next-
generation compute benchmark,” in Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, 2018, pp. 41-42.
D. Cao, M. Zhang, H. Lu, X. Ye, D. Fan, Y. Che, and R. Wang, “Stream-
line ring oram accesses through spatial and temporal optimization,” in
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). 1EEE, 2021, pp. 14-25.

T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation,”
in Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, 2011, pp. 1-12.

A. Chakraborti and R. Sion, “Concuroram: High-throughput stateless
parallel multi-client oram,” arXiv preprint arXiv:1811.04366, 2018.

Y. Che, Y. Hong, and R. Wang, “Imbalance-aware scheduler for fast
and secure ring oram data retrieval,” in 2019 IEEE 37th International
Conference on Computer Design (ICCD). IEEE, 2019, pp. 604-612.
Y. Che and R. Wang, “Multi-range supported oblivious ram for efficient
block data retrieval,” in 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 1EEE, 2020, pp. 369—
382.

K.-M. Chung, Z. Liu, R. Pass et al., “Statistically-secure oram with &
(log2 n) overhead,” 2014.

G. Connell, “Technology deep dive: Building a faster oram layer for
enclaves,” https://signal.org/blog/building- faster-oram/, 2022.

S. Deng, W. Xiong, and J. Szefer, “Secure tlbs,” in Proceedings of the
46th International Symposium on Computer Architecture, 2019, pp. 346—
359.

C. W. Fletcher, L. Ren, A. Kwon, M. Van Dijk, and S. Devadas,
“Freecursive oram: [nearly] free recursion and integrity verification
for position-based oblivious ram,” in Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2015, pp. 103-116.

C. W. Fletcher, L. Ren, A. Kwon, M. Van Dijk, E. Stefanov, D. Serpanos,
and S. Devadas, “A low-latency, low-area hardware oblivious ram
controller,” in 2015 IEEE 23rd Annual International Symposium on
Field-Programmable Custom Computing Machines. 1EEE, 2015, pp.
215-222.

N. Fujieda, R. Yamauchi, and S. Ichikawa, “Last path caching: A
simple way to remove redundant memory accesses of path oram,” in
2016 Fourth International Symposium on Computing and Networking
(CANDAR). IEEE, 2016, pp. 347-353.

C. Gentry, K. A. Goldman, S. Halevi, C. Julta, M. Raykova, and
D. Wichs, “Optimizing oram and using it efficiently for secure compu-
tation,” in Privacy Enhancing Technologies: 13th International Sympo-
sium, PETS 2013, Bloomington, IN, USA, July 10-12, 2013. Proceedings
13. Springer, 2013, pp. 1-18.

O. Goldreich and R. Ostrovsky, “Software protection and simulation
on oblivious rams,” Journal of the ACM (JACM), vol. 43, no. 3, pp.
431-473, 1996.

A. J. Goldsmith and P. P. Varaiya, “Capacity of fading channels with
channel side information,” IEEE transactions on information theory,
vol. 43, no. 6, pp. 1986-1992, 1997.

U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G.-Y. Wei, H.-
H. S. Lee, D. Brooks, and C.-J. Wu, “Deeprecsys: A system for
optimizing end-to-end at-scale neural recommendation inference,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). 1EEE, 2020, pp. 982-995.

U. Gupta, X. Wang, M. Naumov, C. Wu, B. Reagen, D. Brooks,
B. Cottel, K. M. Hazelwood, B. Jia, H. S. Lee, A. Malevich,
D. Mudigere, M. Smelyanskiy, L. Xiong, and X. Zhang, “The
architectural implications of facebook’s dnn-based personalized
recommendation,” CoRR, vol. abs/1906.03109, 2019. [Online].
Available: http://arxiv.org/abs/1906.03109

M. Gurman, “Samsung bans staff’s ai use after spotting chatgpt
data leak,” https://www.bloomberg.com/news/articles/2023-05-

https://github.com/Linestro/Palermo-ORAM/
https://github.com/Linestro/Palermo-ORAM/
https://github.com/Linestro/Palermo-ORAM/
https://signal.org/blog/building-faster-oram/
http://arxiv.org/abs/1906.03109
https://www.bloomberg.com/news/articles/2023-05-02/samsung-bans-chatgpt-and-other-generative-ai-use-by-staff-after-leak#xj4y7vzkg

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

02/samsung-bans-chatgpt-and- other- generative- ai- use- by-staff- after-
leak#xj4yTvzkg, 2023.

T. Hoang, C. D. Ozkaptan, A. A. Yavuz, J. Guajardo, and T. Nguyen,
“S3oram: A computation-efficient and constant client bandwidth blowup
oram with shamir secret sharing,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, 2017,
pp. 491-505.

Kaggle, “Display advertising challenge,” https://www.kaggle.com/c/
criteo-display-ad-challenge, 2014.

Kaggle, “Amazon us customer reviews dataset,” https://www.
kaggle.com/datasets/cynthiarempel/amazon-us-customer-reviews-
dataset/data?select=amazon_reviews_multilingual_US_v1_00.tsv, 2021.
Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible dram
simulator,” IEEE Comput. Archit. Lett., vol. 15, no. 1, p. 4549, Jan.
2016. [Online]. Available: https://doi.org/10.1109/LCA.2015.2414456
E. Kushilevitz, S. Lu, and R. Ostrovsky, “On the (in) security of hash-
based oblivious ram and a new balancing scheme,” in Proceedings of
the twenty-third annual ACM-SIAM symposium on Discrete Algorithms.
SIAM, 2012, pp. 143-156.

J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Signed networks in
social media,” in Proceedings of the SIGCHI conference on human
factors in computing systems, 2010, pp. 1361-1370.

W. Lian, B. Goodson, E. Pentland, A. Cook, C. Vong, and “Teknium”,
“Openorca: An open dataset of gpt augmented flan reasoning traces,”
https://https://huggingface.co/Open-Orca/OpenOrca, 2023.

J. Lin, L. Liang, Z. Qu, I. Ahmad, L. Liu, F. Tu, T. Gupta, Y. Ding,
and Y. Xie, “Inspire: in-s torage p rivate i nformation re trieval via
protocol and architecture co-design,” in Proceedings of the 49th Annual
International Symposium on Computer Architecture, 2022, pp. 102-115.
H. Lipmaa and B. Zhang, “Two new efficient pir-writing protocols,” in
Applied Cryptography and Network Security: 8th International Confer-
ence, ACNS 2010, Beijing, China, June 22-25, 2010. Proceedings 8.
Springer, 2010, pp. 438-455.

M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic,
J. Kubiatowicz, and D. Song, “Phantom: Practical oblivious computation
in a secure processor,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, 2013, pp. 311-
324.

P. Mackey, K. Porterfield, E. Fitzhenry, S. Choudhury, and G. Chin, “A
chronological edge-driven approach to temporal subgraph isomorphism,”
in 2018 IEEE international conference on big data (big data). 1EEE,
2018, pp. 3972-3979.

T. Mayberry, E.-O. Blass, and A. H. Chan, “Efficient private file retrieval
by combining oram and pir,” Cryptology ePrint Archive, 2013.

N. Muralimanohar et al., “Cacti 6.0: A tool to understand large caches,”
in HP laboratories, 2009.

C. Nagarajan, A. Shafiee, R. Balasubramonian, and M. Tiwari, “p: Re-
laxed hierarchical oram,” in Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, 2019, pp. 659-671.

J. Novet, “Microsoft briefly restricted employee access to openai’s
chatgpt, citing security concerns,” https://www.cnbc.com/2023/11/09/
microsoft-restricts-employee- access-to-openais-chatgpt.html, 2023.

H. Omar, S. K. Haider, L. Ren, M. Van Dijk, and O. Khan, “Breaking
the oblivious-ram bandwidth wall,” in 2018 IEEE 36th International
Conference on Computer Design (ICCD). IEEE, 2018, pp. 115-122.
A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, 1. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAl blog,
vol. 1, no. 8, p. 9, 2019.

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

R. Rajat, Y. Wang, and M. Annavaram, ‘“Pageoram: An efficient dram
page aware oram strategy,” in 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO). 1EEE, 2022, pp. 91-107.
R. Rajat, Y. Wang, and M. Annavaram, “Laoram: A look ahead oram
architecture for training large embedding tables,” in Proceedings of the
50th Annual International Symposium on Computer Architecture, 2023,
pp. 1-15.

M. Raoufi, J. Yang, X. Tang, and Y. Zhang, “Ab-oram: Constructing
adjustable buckets for space reduction in ring oram,” in 2023 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). 1IEEE, 2023, pp. 361-373.

M. Raoufi, Y. Zhang, and J. Yang, “Ir-oram: Path access type based
memory intensity reduction for path-oram,” in 2022 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA).

IEEE, 2022, pi). 360-372.
L. Ren, C. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. Van Dijk,

and S. Devadas, “Constants count: Practical improvements to oblivious
{RAM},” in 24th USENIX Security Symposium (USENIX Security 15),
2015, pp. 415-430.

L. Ren, X. Yu, C. W. Fletcher, M. Van Dijk, and S. Devadas, “Design
space exploration and optimization of path oblivious ram in secure
processors,” in Proceedings of the 40th Annual International Symposium
on Computer Architecture, 2013, pp. 571-582.

R. Rossi and N. Ahmed, “The network data repository with interactive
graph analytics and visualization,” in Proceedings of the AAAI confer-
ence on artificial intelligence, vol. 29, no. 1, 2015.

C. Sahin, V. Zakhary, A. El Abbadi, H. Lin, and S. Tessaro, “Taostore:
Overcoming asynchronicity in oblivious data storage,” in 2016 IEEE
Symposium on Security and Privacy (SP). 1EEE, 2016, pp. 198-217.
E. Stefanov, M. v. Dijk, E. Shi, T.-H. H. Chan, C. Fletcher, L. Ren,
X. Yu, and S. Devadas, “Path oram: an extremely simple oblivious ram
protocol,” Journal of the ACM (JACM), vol. 65, no. 4, pp. 1-26, 2018.
R. Wang, Y. Zhang, and J. Yang, “Cooperative path-oram for effective
memory bandwidth sharing in server settings,” in 2017 [EEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2017, pp. 325-336.

WikiChip, “Alder lake - microarchitectures - intel,” https://en.wikichip.
org/wiki/intel/microarchitectures/alder_lake, 2023.

P. Williams, R. Sion, and A. Tomescu, “Privatefs: A parallel oblivious
file system,” in Proceedings of the 2012 ACM conference on Computer
and communications security, 2012, pp. 977-988.

X. Yu, S. K. Haider, L. Ren, C. Fletcher, A. Kwon, M. Van Dijk,
and S. Devadas, “Proram: dynamic prefetcher for oblivious ram,” in
Proceedings of the 42nd Annual International Symposium on Computer
Architecture, 2015, pp. 616-628.

X. Zhang, G. Sun, P. Xie, C. Zhang, Y. Liu, L. Wei, Q. Xu, and
C. J. Xue, “Shadow block: Accelerating oram accesses with data
duplication,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 1EEE, 2018, pp. 961-973.

X. Zhang, G. Sun, C. Zhang, W. Zhang, Y. Liang, T. Wang, Y. Chen, and
J. Di, “Fork path: improving efficiency of oram by removing redundant
memory accesses,” in Proceedings of the 48th International Symposium
on Microarchitecture, 2015, pp. 102-114.

H. Zhong, C. Hua, R. Shi, and W. Li, “Pir-writing protocol that supports
information share,” in 2012 8th International Conference on Wireless
Communications, Networking and Mobile Computing. 1EEE, 2012, pp.
1-5.

G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li,
and K. Gai, “Deep interest network for click-through rate prediction,”
in Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining, 2018, pp. 1059—-1068.

https://www.bloomberg.com/news/articles/2023-05-02/samsung-bans-chatgpt-and-other-generative-ai-use-by-staff-after-leak#xj4y7vzkg
https://www.bloomberg.com/news/articles/2023-05-02/samsung-bans-chatgpt-and-other-generative-ai-use-by-staff-after-leak#xj4y7vzkg
https://www.kaggle.com/c/ criteo-display-ad-challenge
https://www.kaggle.com/c/ criteo-display-ad-challenge
https://www.kaggle.com/datasets/cynthiarempel/amazon-us-customer-reviews-dataset/data?select=amazon_reviews_multilingual_US_v1_00.tsv
https://www.kaggle.com/datasets/cynthiarempel/amazon-us-customer-reviews-dataset/data?select=amazon_reviews_multilingual_US_v1_00.tsv
https://www.kaggle.com/datasets/cynthiarempel/amazon-us-customer-reviews-dataset/data?select=amazon_reviews_multilingual_US_v1_00.tsv
https://doi.org/10.1109/LCA.2015.2414456
https://https://huggingface.co/Open-Orca/OpenOrca
 https://www.cnbc.com/2023/11/09/microsoft-restricts-employee-access-to-openais-chatgpt.html
 https://www.cnbc.com/2023/11/09/microsoft-restricts-employee-access-to-openais-chatgpt.html
https://en.wikichip.org/wiki/intel/microarchitectures/alder_lake
https://en.wikichip.org/wiki/intel/microarchitectures/alder_lake

	Introduction
	ORAM Background and Threat Model
	A Case For Oblivious RAM/Memory
	Threat model
	ORAM Protocol
	Practical ORAM Implementation

	Analysis of Prior ORAM Proposals
	Analysis of Classical ORAM Implementations
	Prefetch-based Optimization Strategies
	Summary of Challenges Optimizing ORAM Performance

	Introducing Concurrency using Palermo
	Key Design Goals
	Unlocking Parallelism in ORAM Protocol
	Palermo Protocol Details

	Palermo ORAM Controller Design
	Hardware Support for Unlocking Additional Parallelism
	A Walk-Through Example
	Palermo Integration with Prefetching
	Discussion: Comparison with Software-based Parallel ORAM Protocols
	Discussion: Optimizing RingORAM over PathORAM

	Security Analysis of Palermo
	Evaluation Methodology
	Real-World Cloud Services
	State-of-the-art ORAM Baselines
	Simulation Parameters and Infrastructure

	Evaluation Results
	Performance Analysis
	Palermo Performance Analysis with Prefetching
	Sensitivity Analysis
	Area and Power Analysis

	Related Work
	Conclusion
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access?
	Hardware dependencies
	Software dependencies
	Datasets

	Installation
	Experiment workflow
	Evaluation and expected results

	References

